Lecture 6 : Single Queues

Prof. Hee Yong Youn
College of Software
Sungkyunkwan University
Suwon, Korea
youn7147@skku.edu

Classifications of queues

\square Models for \qquad state space Markov chains
$\square \mathbf{X} / \mathrm{X} / \mathrm{X} / \mathrm{X} / \mathrm{X}$

Classifications of queues (cont'd)

$\square \mathrm{M}:$ \qquad (Memoryless)
$\square \mathrm{D}$: \qquad
$\square \mathrm{E}_{\mathrm{r}}$: r-stage
$\square H_{k}$: k-stage \qquad
\square G: \qquad
$\square(\operatorname{ex}) \mathbf{M} / \mathbf{M} / \mathbf{1} / \infty / \infty(\mathbf{M} / \mathbf{M} / \mathbf{1})$

Queuing discipline

\square Based on the order of \qquad from the queue
\square FCFS/ LCFS/ RR (Round Robin)/ PS (Processor Sharing)/ Random/ Priority/ SJF/ LJF)
\qquad)
\square Based on preemption modes for priority or LCFS queue
\square Non-preemptive/ Preemptive-resume/ Preemptive-restart

System utilization

\square Utilization(ρ): Fraction of time a system is busy
\square Bottleneck: Component with a utilization close to 1

(services)

(job arrivals)

$$
\rho=\lim _{N \rightarrow \infty} \sum_{\substack{N \\ x_{1} \\ x_{n}}}^{\sum_{n=1}^{N} a_{n}}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \sum_{n=1}^{N} \mathbf{x}_{n} / \mathbf{N} / \mathbf{N}=\overline{\bar{x}} \overline{\bar{a}}=\lambda \overline{\mathbf{x}}
$$

\square Multi-server system: $\rho=\frac{\lambda \overline{\mathbf{x}}}{\mathrm{m}}$ (with m servers)
\square (Ex 6.2) For a queue with 2 servers of service rate of μ respectively and arrival rate of λ, the utilization is \qquad

Little's theorem

t
$\square \quad$ Assume $\mathbf{a}(0)=\mathbf{d}(0)$ and $\mathbf{a}(\tau)=\mathbf{d}(\tau)$, and k customers have arrived during τ
\qquad $\begin{aligned} \lambda & =\text { avg. customer arrival rate } \\ & =\frac{\mathbf{a}(\tau)}{\tau}=\frac{\mathbf{k}}{\tau}\end{aligned}$
$T=$ avg. delay time per customer

$$
=\frac{1}{\mathbf{a}(\tau)} \sum_{\mathrm{k}=1}^{\mathrm{a}(\tau)} \mathbf{t}_{\mathrm{k}}
$$

$\mathrm{N}=$ avg. no. of customers in the system
$=\frac{1}{\tau} \int_{0}^{\tau} \mathbf{n}(\mathbf{t}) \mathbf{d t}$
$\mathbf{A}=\int_{0}^{\tau}(\mathbf{a}(\mathbf{t})-\mathbf{d}(\mathbf{t})) \mathbf{d t}=\sum_{\mathbf{k}=1}^{\mathbf{a}(\tau)} \mathbf{t}_{\mathbf{k}}$
$\int_{0}^{\tau}(\underset{\text { holds for any }}{(\mathbf{n}(\mathbf{t})) \mathbf{d t}}=\mathbf{a}(\tau) \mathbf{T}$
\qquad displine)
\square Work conserving system (no work is created or \qquad within the system)

Little's theorem (example)

\square (Em 6.1) Observes 32 customers per hour arriving on the average and notices that each customer exits after 12 minutes on the average, how many customers stay inside on the average?
\square (Ex 6.3) A simulation program has finished the execution of $\mathbf{1 2 . 3 5 6}$ jobs while 25.6 jobs arrive on the average per minute. How long each job takes to finish on the average?

Birth-death systems

\square time MC

$$
\boldsymbol{\pi} \mathbf{Q}=\mathbf{0}, \quad \mathbf{Q}=\left[\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & \\
\mu_{1} & -\left(\mu_{1}+\lambda_{1}\right) & \lambda_{1} & 0 & \cdots \\
0 & \mu_{2} & -\left(\mu_{2}+\lambda_{2}\right) & \lambda_{2} & \\
& & & \vdots & \\
& & & &
\end{array}\right]
$$

Birth-death systems (cont'd)

\square In steady state, the state change rate must be

$$
\Rightarrow \mathbf{q}_{\mathbf{k}, \mathbf{k}}=-\mathbf{q}_{\mathbf{k}, \mathbf{k}-1}-\mathbf{q}_{\mathbf{k}, \mathbf{k}+1}
$$

$$
\begin{aligned}
& -\pi_{0} \lambda_{0}+\pi_{1} \mu_{1}=0 \rightarrow \pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0} \quad \pi_{\mathrm{k}}=\frac{\lambda_{\mathrm{a}} \lambda_{1} \ldots \lambda_{\mathrm{k}-1}}{\mu_{\mathrm{k}} \mu_{\mathrm{k}-1} \ldots \mu_{1}} \pi_{\mathrm{a}}=\left(\prod_{\mathrm{j}=\mathrm{0}}^{\mathrm{k}-1} \frac{\lambda_{\mathrm{i}}}{\mu_{\mathrm{j}+1}}\right) \pi_{\mathrm{n}} \\
& \pi_{0} \lambda_{\mathrm{o}}-\left(\mu_{1}+\lambda_{1}\right) \pi_{1}+\pi_{2} \mu_{2}=0 \\
& \pi_{0}\left(\lambda_{\mathrm{o}}-\left(\mu_{1}+\lambda_{1}\right) \frac{\lambda_{\mathrm{a}}}{\mu_{1}}\right)=-\pi_{2} \mu_{2} \\
& \pi_{0}\left(-\frac{\lambda_{1} \lambda_{\mathrm{a}}}{\mu_{1}}\right)=-\pi_{2} \mu_{2} \rightarrow \pi_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{2} \mu_{1}} \pi_{\mathrm{a}} \\
& \sum_{k=0}^{\infty} \pi_{k}=1 \rightarrow \pi_{0}\left(1+\sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}\right)=1 \\
& \pi_{\mathrm{n}}=\frac{1}{1+\sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\lambda_{i}}{\mu_{j+1}}}, \pi_{k}=\frac{\prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}}{1+\sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}}
\end{aligned}
$$

Birth-death systems (cont'd)

\square

$$
\pi_{0}=\frac{1}{1+\sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}}, \pi_{k}=\frac{\prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}}{1+\sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}}
$$

\square Ergodicity

- Aperiodic
\square Recurrent non-null (check if $\boldsymbol{\pi}_{\boldsymbol{k}} \neq 0$)

$$
\pi_{k}=A \pi_{0} ; \pi_{k} \neq 0 \text { if } \boldsymbol{\pi}_{\mathbf{0}} \neq 0 \text { and } A \neq 0
$$

$$
\mathbf{S}_{\mathbf{0}} \equiv \frac{1}{\pi_{0}}=1+\sum_{\mathrm{k}=1}^{\infty} \prod_{\mathrm{j}=0}^{\mathrm{k}-1} \frac{\lambda_{\mathbf{j}}}{\mu_{\mathrm{j}+1}} ; \mathbf{S}_{1} \equiv \sum_{\mathrm{k}=1}^{\infty} \frac{1}{\prod_{\mathrm{j}=0}^{\mathrm{k}-1} \frac{\lambda_{\mathrm{j}}}{\mu_{\mathrm{j}+1}}}
$$

$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	Markov Chain
$<\infty$	$=\infty$	
$=\infty$	$=\infty$	Recurrent null
$=\infty$	$<\infty$	

For convergence, there must be a \boldsymbol{k} beyond which $\lambda<\mu$

M/M/1 queue

\square At steady state

$$
\begin{aligned}
& \lambda \pi_{0}=\mu \pi_{1} \rightarrow \pi_{1}=\frac{\lambda}{\mu} \pi_{0} \\
& \lambda \pi_{1}=\mu \pi_{2} \rightarrow \pi_{2}=\frac{\lambda}{\mu} \pi_{1}=\left(\frac{\lambda}{\mu}\right)^{2} \pi_{0}
\end{aligned}
$$

M/M/1 queue (cont'd)

$$
\begin{aligned}
& \pi_{k}=\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}, \frac{\lambda}{\mu}=\rho \\
& \pi_{k}=\rho^{k} \pi_{0} \\
& \sum_{k=0}^{\infty} \pi_{k}=1 ; \pi_{0} \sum_{k=0}^{\infty} \rho^{k}=1 ; \pi_{0}=\frac{1}{\frac{1}{1-\rho}}=1-\rho \\
& N=\sum_{k=0}^{\infty} k \pi_{k}=(1-\rho) \sum_{k=0}^{\infty} k \rho^{k}
\end{aligned}
$$

M/M/1 queue (cont'd)

\square Ergodic if $\lambda<\mu$

$$
\begin{aligned}
& \frac{d\left(\sum_{k=0}^{\infty} \rho^{k}\right)}{d \rho}=\frac{d\left(\frac{1}{1-\rho}\right)}{d \rho} \\
& \sum_{k=0}^{\infty} k \rho^{k-1}=-\frac{1}{(1-\rho)^{2}}(-1) \\
& \frac{1}{\rho} \sum_{k=0}^{\infty} k \rho^{k}=\frac{1}{(1-\rho)^{2}} \\
& \sum_{k=0}^{\infty} k \rho^{k}=\frac{\rho}{(1-\rho)^{2}} \\
& N=(1-\rho) \frac{\rho}{(1-\rho)^{2}}=\frac{\rho}{1-\rho}
\end{aligned}
$$

M/M/1 queue (cont'd)

\square Another approach for getting N

$$
\begin{aligned}
& \pi_{k}=(1-\rho) \rho^{k} \\
& \pi^{*}(\mathbf{z})=\sum_{\mathbf{k}=\mathbf{0}}^{\infty} \pi_{\mathbf{k}} \mathbf{z}^{\mathbf{k}} \\
& =(1-\rho) \sum_{k=0}^{\infty}(\rho z)^{k} \\
& =\frac{1-\rho}{1-\rho z} \\
& \mathbf{N}=\left.\frac{\mathbf{d}}{\mathbf{d z}} \pi^{*}(\mathbf{z})\right|_{\mathbf{z}=\mathbf{1}}=\left.\frac{\rho(\mathbf{1}-\rho)}{(1-\rho \mathbf{z})^{\mathbf{2}}}\right|_{\mathbf{z}=\mathbf{1}} \\
& =\frac{\rho}{1-\rho}
\end{aligned}
$$

$\square N_{Q}=$ Average number of customers in the queue
$=\boldsymbol{N}-\boldsymbol{\rho}=\frac{\rho}{1-\rho}-\rho=\frac{\rho^{2}}{1-\rho}$
(* ρ is service utilization which is average number of customers in the service *)

M/M/1 queue (cont'd)

\square Avg no. of customers in service, $E[C]$
C : r.v., 1 if a customer in service, 0 otherwise

$$
\begin{aligned}
& P[C=1]=\sum_{k=1}^{\infty}(1-\rho) p^{k}=1-\pi_{0}=\rho \\
& E[C]=0 \times P[C=0]+1 \times P[C=1]=\rho
\end{aligned}
$$

\square By Little's theorem

$$
T=\frac{N}{\lambda}=\frac{\frac{1}{\mu}}{1-\rho} ; \frac{1}{\mu}=\text { average time in server }
$$

$$
T_{Q}=T-\frac{1}{\mu}=\frac{\frac{1}{\mu}}{1-\rho}-\frac{1}{\mu}=\frac{\frac{\lambda}{\mu^{2}}}{1-\rho} \quad \text { (average waiting time in queue) }
$$

$$
=(\rho /(1-\rho))(1 / \mu)=_(1 / \mu)
$$

(Any incoming job sees __ customers in the system. Thus, it needs to wait $N(1 / \mu)$ time for them to \qquad the system to get the service.)

M/M/1 queue (cont'd)

\square Prob. density function of waiting time, $w(t)$

$$
\begin{aligned}
& \boldsymbol{W}=\boldsymbol{R}+\sum_{i=2}^{k} \boldsymbol{X}_{i} \\
& W(t \mid k)=S_{1}(t) \otimes S_{2}(t) \otimes \cdots \otimes S_{k}(t) \\
& W^{*}(s \mid k)=\left[S^{*}(s)\right]^{k}=\left[\frac{\mu}{\mu+s}\right]^{k} \\
& \boldsymbol{W}^{*}(s)=\sum_{k=0}^{\infty}\left[\frac{\mu}{\mu+s}\right]^{k} \pi_{k} \\
& =\sum_{k=0}^{\infty}\left[\frac{\mu}{\mu+s}\right]^{k}(1-\rho) \rho^{k} \\
& =(1-\rho) \frac{\mu+s}{(1-\rho) \mu+s} \\
& =(1-\rho)+(1-\rho) \frac{\rho \mu}{s+(1-\rho) \mu} \\
& \boldsymbol{w}(\boldsymbol{t})= \begin{cases}1-\rho & \mathrm{t}=0 \\
(1-\rho) \rho \mu \mathrm{e}^{-(1-\rho) \mu \mathrm{t}} & \mathrm{t}>0\end{cases}
\end{aligned}
$$

$$
\begin{align*}
\int_{0}^{\infty} w(t) d t & =(1-\rho)+\int_{0}^{\infty}(1-\rho) \rho \mu e^{-(1-\rho) \mu t} d t \tag{Proof}\\
& =(1-\rho)+\left.(1-\rho) \rho \mu \frac{e^{-(1-\rho) \mu t}}{-(1-\rho) \mu}\right|_{0} ^{\infty} \\
& =(1-\rho)+\rho=1
\end{align*}
$$

Hence, $w(t)$ is a correct \qquad function.

M/M/1 queue (cont'd)

$\square E[T]=-\left.\frac{d}{d s} F^{*}(s)\right|_{s=0}=-\left.(1-\rho) \rho \mu \frac{-1}{(s+(1-\rho) \mu)^{2}}\right|_{s=0}$

$$
\begin{aligned}
& =\frac{\rho}{(1-\rho) \mu}=\frac{\frac{\lambda}{\mu^{2}}}{1-\rho}=T_{Q} \text { or } \\
& E[T]=\int_{0}^{\infty} t w(t) d t=(1-\rho) \rho \mu \int_{0}^{\infty} t e^{-(1-\rho) \mu t} d t \\
& =(1-\rho) \rho \mu\left[\left.\frac{t e^{-(1-\rho) \mu t}}{-(1-\rho) \mu}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{e^{-(1-\rho) \mu t}}{-(1-\rho) \mu} d t\right] \\
& =\left.(1-\rho) \rho \mu \frac{1}{(1-\rho) \mu} \frac{e^{-(1-\rho) \mu t}}{-(1-\rho) \mu}\right|_{0} ^{\infty}=\frac{\rho}{(1-\rho) \mu}=T_{Q}
\end{aligned}
$$

M/M/1 queue (cont'd)

\square (Ex 6.4) M/M/1 queue of arrival of 2 per minute and serve of 4 per minute. How many customers on the average?

$$
\begin{aligned}
& \lambda=2 ; \mu=4 \quad \rho= \\
& N=\rho /(1-\rho)=1
\end{aligned}
$$

\square (Ex 6.5) M/M/1 queue of 4 people in the queue excluding the one in service. What is the average utilization?

$$
\begin{aligned}
& N_{Q}=\rho^{2} /(1-\rho)=4 \\
& \rho^{2}+4 \rho-4=0 \\
& \rho=-2 \pm \sqrt{ }(4+4)=-2 \pm 2 \sqrt{2}=0.828
\end{aligned}
$$

M/M/ ∞ queue

Will there be any customer waiting in the queue at any moment?

\square Infinite servers, constant arrival rate λ, constant service rate μ per customer
$\square \mu_{\mathrm{k}}=k \mu$
$\pi_{k}=\left(\prod_{j=0}^{k-1} \frac{\lambda}{(j+1) \mu}\right) \pi_{0}=\frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0}$
$\pi_{0}=\frac{1}{1+\sum_{k=1}^{\infty} \frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}}=\frac{1}{\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{\mathbf{k}}}=\frac{1}{e^{\frac{\lambda}{\mu}}}=e^{-\frac{\lambda}{\mu}}$
$\pi_{k}=\frac{\left(\frac{\lambda}{\mu}\right)^{k}}{k!} e^{-\frac{\lambda}{\mu}}:$ Poisson density

$$
\begin{aligned}
& \mu \pi_{1}=\lambda \pi_{0}, \quad \pi_{1}=\frac{\lambda}{\mu} \pi_{0} \\
& 2 \mu \pi_{2}=\lambda \pi_{1}, \quad \pi_{2}=\frac{\lambda}{2 \mu} \frac{\lambda}{\mu} \pi_{1}
\end{aligned}
$$

M/M/ ∞ queue (cont'd)

\square Ergodic if $\frac{\lambda}{\mu}<\infty$ since

$$
S_{0}=e^{\frac{\lambda}{\mu}}<\infty ; S_{1}=\sum_{k=0}^{\infty} \frac{k!}{\left(\frac{\lambda}{\mu}\right)^{k}}=\infty
$$

\square Calculation of N and T

$$
\begin{aligned}
& \pi^{*}(\mathbf{z})=\mathbf{e}^{-\frac{\lambda}{\mu}} \sum_{\mathbf{k}=0}^{\infty} \frac{\left(\frac{\lambda \mathbf{z}}{\mu}\right)^{\mathbf{k}}}{\mathbf{k}!} \mathbf{e}^{-\frac{\lambda}{\mu}} \mathbf{e}^{\frac{\lambda \mathbf{z}}{\mu}}=\mathbf{e}^{\frac{\lambda(\mathbf{z}-\mathbf{1})}{\mu}} \\
& \mathbf{N}=\left.\frac{\mathbf{d}}{\mathbf{d z}} \pi^{*}(\mathbf{z})\right|_{\mathbf{z}=\mathbf{1}}=\left.\frac{\lambda}{\mu} \mathbf{e}^{\frac{\lambda(\mathbf{z}-\mathbf{1})}{\mu}}\right|_{\mathbf{z}=\mathbf{1}}=\frac{\lambda}{\mu} \\
& \mathbf{T}=\frac{\mathbf{N}}{\lambda}=\frac{\mathbf{1}}{\mu}
\end{aligned}
$$

Exercise

\square (Ex 6.6) m-server loss queue. Solve for the steady-state probability of \boldsymbol{k} customers being in the system.

$\pi_{k}=(\quad) \pi_{0}, \quad k \leq m$
$\pi_{0}\left(1+\sum_{k=1}^{m} \frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}\right)=1 \quad \pi_{0}\left(\sum_{k=0}^{m} \frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}\right)=1$
$\pi_{0}=\frac{1}{\sum_{k=0}^{m} \frac{1}{k!}\left(\frac{\lambda}{\mu}\right)^{k}}$

M/M/1/L/M queue ($\mathbf{M}>\mathrm{L}$)

$$
\begin{aligned}
& \square \lambda_{\mathbf{k}}=\begin{array}{lll}
\boldsymbol{\mu} & \boldsymbol{\mu} & \boldsymbol{\mu} \\
(\mathbf{M}-\mathbf{k}) \lambda & \mathbf{k}<\mathbf{L} \\
\mathbf{0} & \mathbf{k} \geq \mathbf{L}
\end{array} \quad \pi_{k}=\left(\prod_{j=0}^{k-1} \frac{(M-j) \lambda}{\mu}\right) \pi_{0}=\frac{\boldsymbol{M}!}{(M-k)!}\left(\frac{\lambda}{\mu}\right)^{k} \pi_{0} \\
& \mu_{k}=\mu \\
& { }^{\star} \mu \pi_{1}=M \lambda \pi_{0}, \quad \pi_{1}=\frac{M \lambda}{\mu} \pi_{0} \quad 1+\sum_{j=1}^{L} \frac{M!}{(M-j)!}\left(\frac{\lambda}{\mu}\right)^{j} \\
& \mu \pi_{2}=(M-1) \lambda \pi_{1}, \quad \pi_{2}=\frac{(M-1) \lambda}{\mu} \pi_{1}=\frac{M \lambda}{\mu} \frac{(M-1) \lambda}{\mu} \pi_{0} \quad\left(\frac{\lambda}{\mu}\right)^{k} \\
& \pi_{k}=\frac{\overline{(M-k)!}}{{ }_{L}\left(\frac{\lambda}{\mu}\right)^{j}} ; N=\sum_{k=1}^{L} k \pi_{k} \\
& \sum_{j=0}^{L} \frac{\left(\frac{\lambda}{\mu}\right)^{j}}{(M-j)!}
\end{aligned}
$$

Exercise

\square (Ex 6.7) Consider (M/M/1/L/ ∞) queue. Find the probability of there \boldsymbol{k} customers being in the system.

$$
\begin{aligned}
& \mu \pi_{1}=\lambda \pi_{0}, \quad \pi_{1}=\frac{\lambda}{\mu} \pi_{0} \\
& \mu \pi_{2}=\lambda \pi_{1}, \quad \pi_{2}=\left(\frac{\lambda}{\mu}\right) \pi_{1}=\left(\frac{\lambda}{\mu}\right)^{2} \pi_{0}
\end{aligned}
$$

$$
\pi_{k}=(\quad) \pi_{0}, k \leq L
$$

$$
\left(\frac{\lambda}{\mu}\right)^{0} \pi_{0}+\left(\frac{\lambda}{\mu}\right)^{1} \pi_{0}+\left(\frac{\lambda}{\mu}\right)^{2} \pi_{0}+\ldots+\left(\frac{\lambda}{\mu}\right)^{L} \pi_{0}=1 \quad \pi_{0}\left(\sum_{j=0}^{L}\left(\frac{\lambda}{\mu}\right)^{j}\right)_{=1}
$$

Non-Birth-Death Systems

$\square \mathbf{M} / \mathbf{E}_{\mathbf{r}} / \mathbf{1}$ queue Assume $r=4$ and the state is 7 .

ii) How many more stages the job in the service need to be handled?
\square Erlangian service queue: one server of r sequential stages
\square State: number of stages of service to be completed

$r \mu$
$r \mu \quad r \mu$
$r \mu$
$r \mu$
$r \mu$

M/E/I queue

\square A job is processed sequentially through r stages, each taking an average of $1 /(r \mu)$ time. The total average job processing time is

$$
r \times(1 /(r \mu))=1 / \mu
$$

ㅁ

$$
\begin{cases}\lambda \pi_{0}=r \mu \pi_{1} & \\ (\lambda+r \mu) \pi_{k}=r \mu \pi_{k+1} & 0<k<r \\ (\lambda+r \mu) \pi_{k}=r \mu \pi_{k+1}+\lambda \pi_{k-r} & k \geq r\end{cases}
$$

\square

$$
\begin{aligned}
& \sum_{k=1}^{r-1}(\lambda+\boldsymbol{r} \mu) \pi_{k} z^{k}=\sum_{k=1}^{r-1} \boldsymbol{r} \mu \pi_{k+1} z^{k} \quad ;(1) \\
& \sum_{k=r}^{\infty}(\lambda+\boldsymbol{r} \mu) \pi_{k} z^{k}=\sum_{k=r}^{\infty} \boldsymbol{r} \mu \pi_{k+1} \boldsymbol{z}^{k}+\sum_{k=r}^{\infty} \lambda \pi_{k-r} \boldsymbol{z}^{k} ;(2)
\end{aligned}
$$

$$
(1)+(2) \Rightarrow
$$

$$
(\lambda+\boldsymbol{r} \mu) \sum_{k=1}^{\infty} \pi_{k} z^{k}=\sum_{k=1}^{\infty} \boldsymbol{r} \mu \boldsymbol{\pi}_{k+1} z^{k}+\sum_{k=r}^{\infty} \lambda \pi_{k-r} z^{k}
$$

$$
=\frac{\boldsymbol{r} \boldsymbol{\mu}}{\boldsymbol{z}} \sum_{k=1}^{\infty} \boldsymbol{\pi}_{k+1} z^{k+1}+\lambda z^{r} \sum_{k=r}^{\infty} \pi_{k-r} z^{k-r}
$$

M/E $/$ / 1 queue (cont'd)

$$
\begin{aligned}
& (\lambda+r \mu)\left[\pi^{\prime}(z)-\pi_{0}\right]=\frac{r \mu}{z}\left[\pi^{\prime}(z)-\pi_{1} z-\pi_{0}\right]+\lambda z^{\prime} \pi^{\prime}(z) \\
& \pi^{\prime}(z)=\frac{(\lambda+\boldsymbol{r} \mu) \pi_{0} z-\boldsymbol{r} \mu \pi_{1} z-\boldsymbol{r} \mu \pi_{0}}{(\lambda+\boldsymbol{r} \mu) z-\boldsymbol{r} \mu-\lambda z^{+1}} \\
& =\frac{(z-1) r \mu \pi_{0}}{(\lambda+\boldsymbol{r} \mu) z-\boldsymbol{r} \mu-\lambda z^{r+1}} \quad\left(\lambda \pi_{0}=\boldsymbol{r} \mu \pi_{1}\right) \\
& \pi^{*}(z)=\frac{\mu \pi_{0}}{\frac{(\lambda+\mu) \boldsymbol{z}-\mu \mu-\lambda z^{\prime+1}}{z-1}}=\frac{\mu \pi_{0}}{\mu+\frac{\lambda z-\lambda z^{\prime+1}}{z-1}}= \\
& \frac{\mu \pi_{0}}{\mu-\lambda \boldsymbol{z} \frac{1-\boldsymbol{Z}^{\prime}}{1-\boldsymbol{Z}}}=\frac{\mu \pi_{0}}{\mu-\lambda z \sum_{n=0}^{n-1} \boldsymbol{z}^{\prime}}=\frac{\mu \pi_{0}}{\mu-\lambda \sum_{n=1}^{\delta} \boldsymbol{z}^{\prime \prime}}
\end{aligned}
$$

M/E_/1 queue (cont'd)

$\left.\square F^{*}(z)\right|_{z=1}=\left.\sum_{k=-\infty}^{\infty} \mathbf{f}_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}\right|_{\mathbf{z}=1}=\sum_{\mathrm{k}=-\infty}^{\infty} \mathbf{f}_{\mathrm{k}}=1$ for f_{k} to be a PDF

$$
\begin{aligned}
& \lim _{z \rightarrow 1} \pi^{*}(z)=\lim _{z \rightarrow 1} \frac{\mu \pi_{0}}{\mu t-\lambda \sum_{n=1}^{r} z^{n}}=\frac{\mu \pi_{0}}{\mu-\lambda r}=1, \pi_{0}=1-\frac{\lambda}{\mu}=1-\rho \\
& \pi^{*}(\mathbf{z})=\frac{\mathbf{1}-\rho}{1-\frac{\lambda}{\mathbf{r} \mu} \sum_{\mathrm{n}=1}^{\mathbf{r}} \mathbf{z}^{\mathbf{n}}}=\frac{\mathbf{1}-\rho}{\mathbf{1}-\frac{\rho}{\mathbf{r}} \sum_{\mathrm{n}=1}^{\mathbf{r}} \mathbf{z}^{\mathbf{n}}}
\end{aligned}
$$

$\square E[K]=\operatorname{avg}$ no. of stages of service $=\left.\frac{d}{d z} \pi^{*}(z)\right|_{z=1}=\frac{(\mathbf{r}+1) \rho}{2(1-\rho)}$
$E[C]=\operatorname{avg}$ no. of stages left in service $=\sum_{i=1}^{r} i \frac{\rho}{r}=\rho \frac{r+1}{2}$ ($i=$ the stage no. the server is in)

M/Er/1 queue (cont'd)

$$
\begin{aligned}
& N_{q}=\frac{E[K]-E[C]}{r}=\frac{\rho^{2}(r+1)}{2 r(1-\rho)} \\
& \mathrm{N}=\rho+\mathbf{N}_{\mathrm{q}}=\rho+\frac{\rho^{\mathbf{2}}(\mathbf{r}+\mathbf{1})}{2 \mathbf{r}(\mathbf{1}-\rho)} \\
& \mathbf{T}=\frac{\mathbf{N}}{\lambda}=\frac{1}{\mu}+\frac{\rho(\mathbf{r}+\mathbf{1})}{2 r \mu(1-\rho)} \\
& \pi^{*}(z)=\frac{1-\rho}{\left(1-\frac{z}{z_{1}}\right)\left(1-\frac{z}{z_{2}}\right) \ldots\left(1-\frac{z}{z_{r}}\right)} \\
& =(\mathbf{1}-\rho) \sum_{n=1}^{r} \frac{\boldsymbol{A}_{n}}{\mathbf{1}-\frac{\boldsymbol{z}^{\boldsymbol{z}}}{\boldsymbol{z}_{n}}}, \boldsymbol{A}_{n}=\prod_{m=1, m \neq n}^{r} \frac{\boldsymbol{1}^{\boldsymbol{z}_{k}}}{\mathbf{1}-\frac{\boldsymbol{z}_{n}}{\boldsymbol{z}_{m}}}=(1-\rho)\left(\frac{A_{1}}{\mathrm{z}_{1}^{k}}+\frac{A_{2}}{\mathrm{z}_{2}^{k}}+\frac{A_{3}}{\mathrm{z}_{3}^{k}}\right),\left(\text { Note }: \frac{A}{1-\alpha z} \Leftrightarrow A \alpha^{n}\right) \\
& \pi_{k}=(1-\rho) \sum_{n=1}^{r} \frac{A_{n}}{z_{n}^{k}}
\end{aligned}
$$

Non-Markovian systems

\square Many systems are not $M / \mathbf{M} / \mathbf{x} / \mathbf{x} / \mathbf{x}$, having other than Poisson arrival and exponential service time
\square To ease the analysis of the $M / G / 1$ systems, use the fact that "the average of a sum of r.v.'s is the \qquad of their individual average's, regardless of distribution or dependency"
\square FCFS M/G/1 queue
W : waiting time in the queue
$=N_{q} \overline{\boldsymbol{x}}+$ waiting time of customer in service ($N_{q}:$ no. of customers in the queue, \bar{x} : avg. service time)

$$
=N_{q} \bar{x}+(1-\rho) \cdot 0+\rho \frac{\overline{x^{2}}}{2 \bar{x}}
$$

FCFS M/G/1 queue(cont'd)

$\square N_{q}=W \lambda, \rho=\lambda \overline{\mathbf{x}}$

$$
\begin{aligned}
& W=\overline{\mathbf{x}} \lambda W=\rho \frac{\overline{\mathbf{x}^{2}}}{2 \overline{\mathbf{x}}} \quad \text { (Pollaczek-Khinchin eq.) } \\
& \mathbf{W}=\frac{\lambda \overline{\mathbf{x}^{2}}}{2(\mathbf{1}-\rho)} \\
& T=W+\bar{x}, N=T \lambda
\end{aligned}
$$

$\square \mathrm{M} / \mathrm{M} / \mathbf{1}$

$$
\begin{aligned}
& B *(s)=\frac{\mu}{\mu+s} \\
& \bar{x}=-\left.\frac{d}{d s} B *(s)\right|_{s=0}=\frac{1}{\mu}, \overline{x^{2}}=\left.\frac{d^{2}}{d s^{2}} B *(s)\right|_{s=0}=\frac{2}{\mu^{2}} \\
& N=\rho+\frac{\lambda^{2} \frac{2}{\mu^{2}}}{2(1-\rho)}=\frac{\rho}{1-\rho}
\end{aligned}
$$

FCFS M/G/1 queue(cont'd)

$\square(E m$ 6.2) M/ER/1

$$
\begin{aligned}
& B *(s)=\left(\frac{r \mu}{r \mu+s}\right)^{r} \\
& \bar{x}=-\left.\frac{d}{d s} B^{*}(s)\right|_{s=0}=\frac{1}{\mu}, \overline{x^{2}}=\left.\frac{d^{2}}{d s^{2}} B *(s)\right|_{s=0}=\frac{r+1}{r \mu^{2}} \\
& N=\rho+\frac{\frac{\lambda^{2}(1+r)}{r \mu^{2}}}{2(1-\rho)}=\rho+\frac{\rho^{2}(1+r)}{2 r(1-\rho)}
\end{aligned}
$$

- (Em 6.3) M/D/1

$$
\begin{aligned}
& \bar{x}=C, \overline{x^{2}}=C^{2} \\
& N=\rho+N_{q}=\lambda C+\frac{\lambda C^{2}}{2(1-\rho)} \lambda
\end{aligned}
$$

Priority M/G/1 queue

\square LCFS (last come first serve) / HOL (head of the line)
Class 1 arrival

$\square \underline{\lambda_{m}}$: arrival rate for class-m
x_{m} : average service time for class-m
$\rho_{m}\left(=\lambda_{m} \overline{x_{m}}\right)$: fraction of time class- m is served
\square Highest priority job sees an M/G/1 system (in a preemptive system)
\square The next highest sees service available only $\left(1-\rho_{1}\right)$ of the time
\square In a non-preemptive system, the highest priority jobs see an M/G/1 with a \qquad service time of the one being served.

Priority M/G/1 queue(cont'd)

No. of higher priority

$$
\boldsymbol{w}_{m}=\boldsymbol{w}_{0}+\sum_{i=1}^{m} \overline{\boldsymbol{x}}_{i}(\overbrace{\lambda_{i} \boldsymbol{w}_{i}}^{\mathbf{N}_{\mathrm{i}}})+\sum_{i=1}^{m-1} \overline{\boldsymbol{x}}_{i}(\overbrace{\lambda_{i} \boldsymbol{w}_{m}}^{\text {jobs arriving } \mathrm{c}})
$$

$1^{\text {st }}$ term : delay due to jobs in \qquad
$2^{\text {nd }}$ term: delay due to jobs \qquad , which are equal or higher priority
$3^{\text {rd }}$ term: delay due to arrivals of \qquad er
priority jobs while waiting

Priority M/G/1 queue(cont'd)

$$
\begin{aligned}
w_{1} & =w_{0}+\rho_{1} w_{1} \\
w_{1} & =\frac{w_{0}}{1-\rho_{1}} \\
w_{2} & =w_{0}+\rho_{1} w_{1}+\rho_{2} w_{2}+\rho_{1} w_{2} \\
w_{2} & =\frac{w_{0}}{\left(1-\rho_{1}-\rho_{2}\right)\left(1-\rho_{1}\right)} \\
& \vdots \\
w_{m}= & \frac{w_{0}}{\left(1-\sum_{i=1}^{m} \rho_{i}\right)\left(1-\sum_{i=1}^{m-1} \rho_{i}\right)}=\frac{w_{0}}{\left(1-\sigma_{m}\right)\left(1-\sigma_{m-1}\right)}
\end{aligned}
$$

(σ_{m} : fraction of time spent on classes of equal or \qquad priority than class-m)

$$
w_{0}=\left\{\begin{array}{l}
\sum_{i=1}^{p} \rho_{i} \frac{\overline{x_{i}^{2}}}{\frac{\bar{x}_{i}}{}}: \text { for non-preemption } \\
\sum_{i=1}^{m} \rho_{i} \frac{\overline{x_{i}^{2}}}{2 \bar{x}_{i}}: \text { for preemption }
\end{array}\right.
$$

Simulation of $\mathrm{M} / \mathrm{M} / 1$ queue

Simulation of M/M/1 queue (cont'd)

$N=$ Avgcus/clock

