Lecture 1 : Introduction to Modeling, Analysis, and Simulation of Computer & Communication Systems

Prof. Hee Yong Youn College of Software Sungkyunkwan University Suwon, Korea youn7147@skku.edu

Modeling

D Model

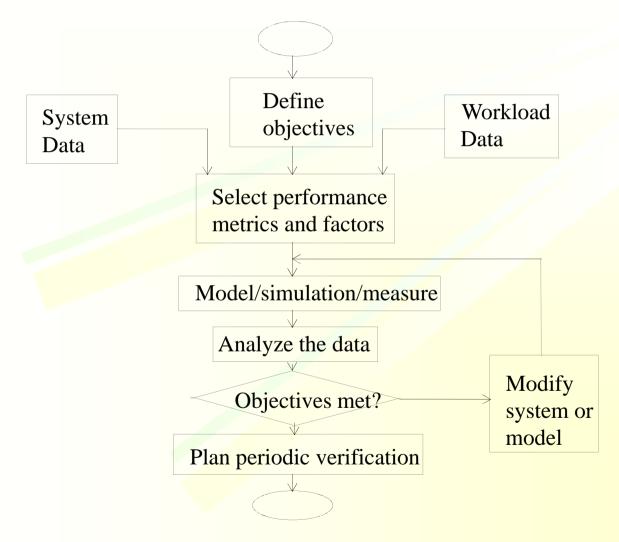
- A physical, logical, or ______ representation that mimics another object under study
- Used for studying, manipulating, observing a system, and thereby _____ the behavior
- Less complex but not _____

Modeling(cont'd)

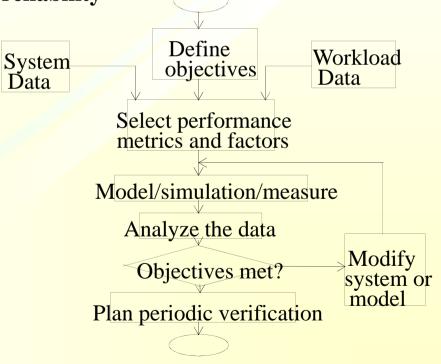
Types of models

- □ Aspect : scale / ____
- □ Levels of representation : concrete / ___
- **Given Series and Seri**

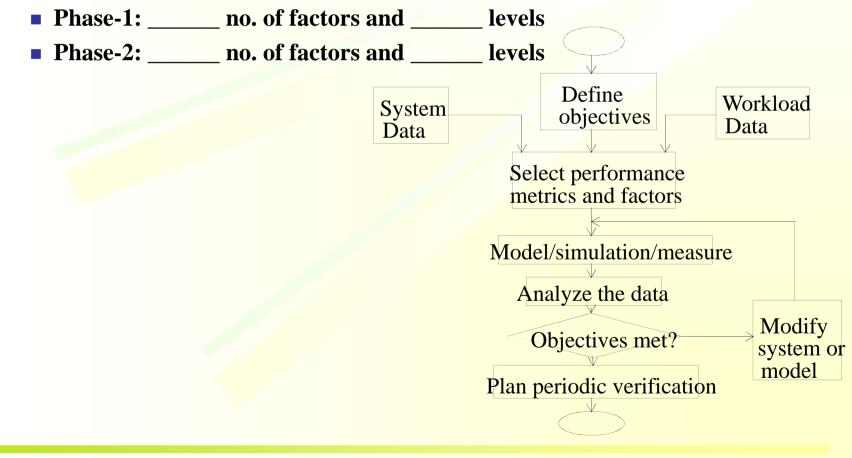
D Modeling procedure



i) Experiment (I/O measurement)
ii) Conjecture of a model
iii) Validation of the model
(ex) F = ma


D Modeling computer system

- Evaluation is required in _____, manufacture, purchase, use, and upgrade
- **Design goal : high performance and low**


D Performance evaluation process

- □ Workload data: _____ from one installation to another
 - (ex) Interarrival time, task size, task mix
- **Given System data:** ______ from one installation to another
 - (ex) CPU type, memory size, clock speed
- Metrics: target performance measures
 - (ex) Throughput, response time, reliability

- □ Factors: _____ data varied in the evaluation since they are believed to mostly affect the system performance
 - (ex) Number of users
- **2** phase measurement:

Usage of performance evaluation

- System comparison, tuning, ______ identification, workload characterization, _____ planning
- Important issues: selection of ______ technique/ metrics/workload, measures of data, interpretation of data, design of simulation and model providing the _____ info with the _____ effort

(ex) Ratio game

System	W ₁	W ₂
Α	20	10
В	10	20

□ The performance metric is throughput in terms of TPS.

For workload-1(W_1), System-____ is 2 times better than System-____.

For workload- $2(W_2)$, System-___ is 2 times better than System-___. Which one is better?

System	W ₁	W_2	Avg
Α	20	10	15
B	10	20	15

System System	W ₁	W_2	Avg	B-base
A	20	10	15	2 .5 1.25
B	10	20	15	1 1 1

System	W ₁	W ₂	Avg	A-base
Α	20	10	15	1 1 1
B	10	20	15	.5 2 1.25

College of Software SungKyunKwan University

Common difficulties in performance evaluation

- □ No or biased goal where the goal is to show that _____ is better than THEIRS. Good attitude is like _____.
 - _____ understanding of the problem causing
 - incorrect metrics, workload, factors
 - improper evaluation technique
- Inappropriate experiment, analysis of data

- **Improper presentation**
- □ Ignoring _____ aspects
- **Too analysis**
- Ignoring variability (mean only is not enough but needs variance study)
- No sensitivity analysis
- Solution by _____ approach

Evaluation techniques

Criterion	Model	Simulation	Measurement
Stage	Any	Any	
Time	Small	Medium	Varies
Accuracy		Moderate	Varies
Analysis	Easy	Moderate	
Cost	Small		High

Employ two or more techniques for

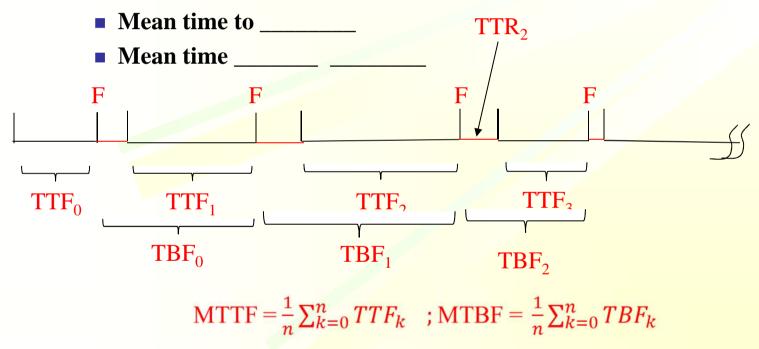
- validating the approaches
- maximizing the efficiency (coarse/fine grain)

Coarse: simple _____ model for finding proper range

Fine: use ______ for that range

Performance Evaluation(cont'd)

Selection of performance metrics


- **u** time (response)
- **a** rate (throughput)
- **resource** (utilization)

Bottleneck in a system: the _____ with the highest _____

Performance Evaluation(cont'd)

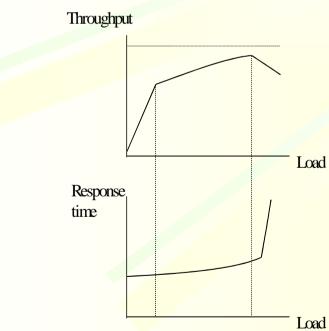
Given Service For incorrect operation

- □ reliability: _____ that the system operates correctly in [t_o, t], given that it was operating correctly at t_o
- □ MTTF/MTBF

Performance Evaluation(cont'd)

availability: Prob. that the system operates correctly at *t*

 $\frac{\text{ontime}}{\text{ontime} + \text{downtime}} = \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}}$


MTBF - MTTRMTBF

Rule: completeness (mean & ____), both individual & _____ metrics, low variability, nonredundancy

Metrics

Response time (turnaround time for _____ mode)

- **reaction time**
- stretch factor = (response time at a load) / (response time at the minimum load)
- □ Throughput

•Nominal capacity (maximum achievable ______ under ideal workload condition)

•Usable capacity (maximum achievable ______ without exceeding a prespecified response time limit)

Knee capacity

•What is the optimal load?

Metrics(cont'd)

- **D** Efficiency = usable capacity / nominal capacity
- **Utilization** = busy time / total time
- **Reliability**, Availability
- **Cost/performance ratio**
- **Capacity**
- **D** Speedup

Workload

- **Interarrival time**
- **D** Task size and mix
- □ I/O request and service rate
- **D** Memory size
- Parallelism

Object-oriented Modeling & Design

Allows

- **better understanding of requirements**
- cleaner design
- more maintainable system
- □ Applied to entire cycle from analysis through design to