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 Probability theory as a model
 Functional aspect (not ______) 

because deals with the process of the object
 Abstract representation (not ________) 

because averages large number of non-deterministic outcomes
 Analytical techniques (neither physical nor ________) 

because uses set theory

 A series of observations can characterize the relative __________ of 
the possible outcomes 
(ex) Program execution time

Probability theory

scale  

concrete  

simulation  

frequency  
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Experiment

 Experiment
 Discrete/ continuous outcomes

 Discrete outcomes: rolling a dice ( ___ different outcomes)
 Continuous outcomes: uncountably infinite no. of outcomes 

even with the range 

 Element : _________  of an object of interest
(ex) Object: color 

Element; red, yellow, …

6  

instance  



# 4College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Set theory notation 

 Set theory notation 
 Sample space (or _________ ) (Ω): The universal set containing 

all possible __________ considered 
 {a,b}: a set of _______ elements, a and b
 [a,b] (or (a,b)): a set of infinite, uncountable values 

between and _________ (or _________ ) a and b

 Empty set (φ): a set of no element
 Union (∪)
 Intersection (∩)
 Complement (′)
 Membership(∈)
 Subset (⊂)

universe  
outcomes  

distinct  

including  excluding  
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Set relationships

 Set relationships
 Mutually __________: A ∩ B = φ
 Mutually exhaustive: A ∪ B = ____
 _________: mutually exclusive and exhaustive
 Interpretation using Venn diagram

exclusive  

Ω

Partition  



# 6College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Law of set theory

 Law of set theory
 __________ (for same operators):  A∩B = B∩A

 __________ (for same operators):  A∪(B∪C) = (A∪B)∪C

 __________ (for different operators): A∩(B∪C) = (A∩B)∪(A∩C)
 Identities:    A ∩ Ω = A,  A ∪ __ = A
 Inverse: (A')' = A

A∪A'= ___(inclusion), A∩A'= φ (exclusion)
 DeMorgan’s Law:   (A∩B)' = A'∪ B'   

(A∪B)' = A'∩ B'

Commutative  

Associative  

Distributive  

φ

Ω
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Sample space & event

 Sample space
 For an _________
 Set of all possible ________
 (ex) tossing two coins: { ______________ }

 Event 
 A set of _________ which is a subset of Ω
 (ex) The faces are not same in tossing two coins: { _________ } 

experiment  

outcomes  

HH,HT,TH,TT  

outcomes  

HT,TH  
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Power set & probability measure 

 Power set of Set-A: a set of all possible _______ of A

 Probability measure (P): the fraction of a large number of 
repetitions ( _______ _________) that a prescribed event or 
________ may occur

subsets  

relative  frequency  
outcome  
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Law of probability 

 Law of probability
 P[Ω] = ____
 0 ≤ P[A] ≤ ___ for A⊆Ω
 P[A∪B] = P[A] + P[B] – P[ _____ ] for A,B⊆Ω
 P[          ] =        P[Am] if Ai’s are mutually _______

1
A

m
m

∞

=
U

1m

∞

=

1  

1  

A∩B  

disjoint  
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Conditional probability

 Conditional Probability

 P[A|B] =

 (Em 2.21) Two coins are flipped. What is the prob. of having 2 heads if 
at least one is head? 

P[B]
B]P[A ∩

A: two heads; P[A] = 1/4   

B: at least one is head; P[B] = ¾   

P[A∩ B] = 1/4  

P[A| B] = P[A∩ B]/P[ B] = (1/4)/(3/4) = 1/3 
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Probability tree

 Probability tree

P[C] C

P[D] D

P[A|C]

P[B|C]

P[A|D]

P[B|D]

P[A∩C]

P[B∩C]

P[A∩D]

P[B∩D]
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Probability tree (exercise)

 (Ex 2.9) Prob. of drawing 2 white balls from a bucket containing 3 
white balls and 2 red balls without replacement?



# 13College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Independence

 Independence: A,B ⊆ Ω are independent iff
P[A∩B] = P[A] P[B]

 (Proof)
If A and B are independent, P[A|B] = P[A] -----(a)

By definition, P[A|B] =              -----------------(b)

(a) = (b) results in 

P[A] = 

Finally, P[A∩B] = P[A] P[B]

P(B)
B) P(A I

P(B)
B) P(A I
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Independence (example)

 (Em 2.23) When we toss two coins, what is the probability getting 
Head on the second coin given that Tail on the first coin?

A: getting Head on the second coin; P[A] =    

B: Tail on the first coin; P[B] =    

P[A|B] = P[A∩B]/ P[B] = (1/4)/(1/2) = ½ = P[A]    

{TH,HH} = 1/2    

{TT,TH} = 1/2    
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Independence (exercise)

 (Ex 2.10) If A and B are independent, what is P[A ∪ B]? Here P[A] 
= 0.2 and P[B] = 0.3.

P[A∪B] = P[A] + P[B] – P[A∩B] = 0.5 – 0.2 × 0.3 = 0.44    
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Independence of a set of events
 Independence of a set of events

 Mutually independent
 Pairwise independent
 (ex) Experiment: tossing 2 dices

Event A: 1st dice = 1, 2, or 3
Event B: 1st dice = 3, 4, or 5
Event C : Σ = 9

 A = {(1,*),(2,*),(3,*)}, P[A] = _____
B = {(3,*),(4,*),(5,*)}, P[B] = _____
C = {(3,6),(4,5),(5,4),(6,3)}, P[C] = _____
A∩B = { ______ }, P[A∩B] = _____
A∩C = { ______ }, P[A∩C] = _____
B∩C = { ______________________ }, P[B∩C] = _____
A∩B∩C = { ______ }, P[A∩B∩C] = _____

 Does pairwise independency guarantee mutual independency?

1/2  

1/2  

1/4  

(3,*)  1/6  

(3,6)  1/36  

(3,6),(4,5),(5,4)  1/12  

(3,6)  1/36  

≠ P[A]P[B]

≠ P[A]P[C] 

≠ P[B]P[C] 

= P[A]P[B] P[C] 

The events are not mutually independent since they are not pairwise independent 
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Bayes’ theorem

 Bayes’ Theorem (Posteriori probability)

 Conditions for applying the theorem
i) _________ by Ai’s
ii) P[ ___ ] ≠ 0


=

 ∩
=∩=

j
jj

ii

j
j

iii
i

]A|P[B ]P[A
]A|P[B ]P[A

  
B]P[A

]A|P[B ]P[A
  

P[B]
B]P[A

  B]|P[A

A1

A2

A3 A5

A4

B

Partition 
B



# 18College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Bayes’ theorem (example)

 (Em 2.24) Three programmers submit jobs to a system, and 
sometimes their jobs fail to be executed. Assume that a job failed to 
be executed. What is the prob. that Programmer-1 sent the job? 

Event-Ai : program was submitted by Programmer-i

Event-B: program failed

P[A1] = 0.2, P[A2] = 0.3,P[A3] = 0.5 

P[B|A1] = 0.1, P[B|A2] = 0.7, P[B|A3] = 0.1

P[A1|B] = (P[A1] P[B|A1])/(P[A1] P[B| A1]+P[A2] P[B|A2] + P[A3] P[B| A3] 
= (0.2×0.1)/(0.2×0.1 + 0.3×0.7 + 0.5×0.1) = 0.02/(0.02+0.21+0.05)
= 0.02/0.28 = 0.071 
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Combinatorics

 Combinatorics:
 Sum (Product) rule: 

The total number of outcomes is the sum (product) of the number of 
outcomes of each ______ if they are ________ (combined). 



# 20College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Combinatorics (exercise)

 (Ex 2.11) What is the probability to pick up an ace card after two 
decks of cards are shuffled together?

 (Ex 2.12) How many different combinations of cards do we have by 
picking one card from each of two decks of cards?
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Sampling with replacement

 Sampling with replacement: NR

 N: number of elements, R: length of sequence (no. of samplings)
(ex) N = 4 for {1, 2, 3, 4},   R = 2

11 12 13 14
21 22 23 24 4×4 = 42

31 32 33 34
41 42 43 44
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Sampling without replacement

 Sampling without replacement: 

 (ex)
12 13 14
21 23 24        4×3 = 
31 32 34
41 42 43

 NPR   = N(N−1)…(N−(R−1))
 (Ex 2.13) How many different combinations of cards do we have when we 

draw five cards from a deck of cards?

R)!-(N
N!

2)!-(4
4!
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Permutations & Combinations

 Permutations:  N! (Sampling without replacement for length N)
 (ex)  4 × 3 × 2 × 1

 Combinations:

 NCR  : Binomial coefficient of Rth term of (x+y)N 

(ex) (x+y)3 = x3 + 3x2y + 3xy2 + y3 

 Size of power set: 

(x+y) N =     xNy0 +       xN-1y1 +       xN-2y2 + …     +      x0yN

R)!-(N R!
N!

  
R

N
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Combinations

 (Ex 2.14) How many different poker hands do we have if we draw 
five cards from a deck of cards?
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Random variables
 Random Variables (X)

 A _______ that assigns a real number to each possible _______ in the 
sample space

 (ex) X : number of heads in tossing two coins
Outcome Probability Value of X Prob[X]

H ¼ 2 Prob[X=2]=__
H

T ¼ 1 Prob[X=1]=__
H                     ¼ 1

T
T ¼ 0 Prob[X=0]=__

Notation  [X = x] = {s∈Ω | X(s) = x}
 (ex) [X = 1] = {HT | X(HT) = 1}

 Random variable carries info about events using _______ in order 
to simplify the manipulation of them
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Random variables (cont’d)

 (Em 2.30) In dart throwing random variable x is the distance from 
the left side, l,   normalized by the width, w. What is the value of x?

 (Ex 2.15) What is the value of random variable, x, which is the sum 
of the dots of two dices rolled?
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Cumulative distribution function

 Cumulative distribution function (CDF), F
 F(x) = P[X ≤ x]
 (ex) Coin tossing 

F(x) 
F(x)=  0, x < 0

¼,  0 ≤ x <1
¾,  1 ≤ x <2
1,  2 ≤ x

F(−∞) = 0     
F(∞)  = __
F(x1) ≤ F(x2),  x1 < x2

1

1      2      3          x
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Cumulative distribution function (exercise)

 (Ex 2.16) Define the CDF of x of the dart problem.
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Probability density function 

 Probability density function (PDF), f

 f(x) = 

 (ex) Coin tossing
f(x) - when a r.v. is discrete
1 f(x) = P[X = x]

=  

f(x) = __, x = 0, 2
½ , x = 1

1 2      3         x 0,   elsewhere

 Since F(∞) = 1,                     = 1

 SinceF(x) is nondecreasing, f(x) ≥ 0

x
f(y) dy

= ∞
x

- dy f(y)  F(x)or     F(x) 
dx
d

∞

∞

f(x)dx
-



# 30College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Distribution of random variable

 Specified by the condition under which the r.v. is defined

 Geometric/ Binomial/ Exponential/ Poisson distribution

 Discrete/ continuous, finite/ infinite distribution
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Geometric distribution

 Experiment: a trial succeeds (1) with probability p or fails(0) with 
probability (1– p). The trial continues until it succeeds.

 Ω: { 0i-11| i = 1,2,3,… } 
 r.v. K: no. of trials ______the first success

 P[K = k] = for k = 1,2,…

 F(k) = P[K ≤ k] =                                                    for k ≥ 1
(Proof)
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Geometric distribution

1       2      3      4       5       k

1
F(k)

p

1        2        3        4         5         k

f(k)
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Modified geometric distribution

 r.v.: no. of trials ______ the first success

 P[K = k] = for k = ____, 2,3,…

 F(k) = P[K ≤ k] = for  k ≥ 0

(Proof) 

1
k
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Binomial distribution ( b(k;N,p))

 Experiment: a trial succeeds (1) with prob. p or fails(0) with prob. 
(1– p). The trial continues for N times.

 Ω: {0i1N-i | i = 0,1,…,N}

 r.v. K: no. of successes out of N trials

 P[K = k] =                    for 0 ≤ k ≤ N

 F(k) = P[K ≤ k] = (no closed form solution)

kNk pp
k

N
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Binomial distribution ( b(k;N,p))

F(k) f(k)

1       2        3       4        5        k

1

1       2        3       4        5        k
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Poisson distribution 

 Experiment: success occurs at the rate of λ
 Ω: {0,1,2,…successes }
 r.v. K: no. of successes in time T

 P[K = k in T] =  

 F(k) = 
=

k

0i

T-

k

e
i!
T)( λλ

e
k!
T)( T

k

λλ −
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Poisson distribution (cont’d)

F(k) f(k)

1

1    2    3    4    5     k 1    2    3    4    5     k

P = λ ∆t =      : prob. of a success in ∆t (n >> λT) 
n
Tλ
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Poisson distribution (cont’d)

P[K in n]  =

=

=

= 

* 

P[k in T]  =   
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Poisson distribution (cont’d)

 Rule of thumb: Use Poisson for binomial if n ≥ 20 and p ≤ 0.05

 (ex)

k b(k; 5,0.2) b(k; 20,0.05) Poisson(k; λT=1)

0 0.328 0.359 0.368

1 0.410 0.377 0.368

2 0.205 0.189 0.184

3 0.051 0.060 0.061
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Exponential distribution

 Continuous case of __________ distribution

 Experiment: success occurs at the rate of λ
 Ω: { t |t ≥ 0}
 r.v. t: time to the first success

 F(t) = P[T ≤ t] = 1 – e–λt for 0 ≤ t

 f(t) = λe–λt

 Application: interarrival time, service time, time to failure, repair time

F(t) f(t)

λ
1

t t
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Conditional PDF

 f(x|A) =         ,    x∈A 
P[A]
f(x)
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Using CDF and PDF

 Using CDF and PDF
 Calculate prob. of events and expectations
 Use _____ for prob. and _____ for expectation

 P[a < X ≤ b] = P[X ≤ b] – P[X ≤ b] = F(b) – F(a) =               
+=

b

a

b

1ai
f(i)or   dx    f(x)
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Using CDF and PDF (cont’d)

≥
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Using CDF (exercises)

 (Ex 2.17) What is the prob that a dart lands in the middle third of 
the dart board?

 (Ex 2.18) What is the prob that a dart lands precisely in the middle 
of the dart board?

 (Ex 2.19) What is the prob that for a geometrically distributed 
random variable, the value is 4, 5, or 6?
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Expectations

 E[K] =             ,     E[X] =                                                    

 E[K]
 Expected value (average) of r.v. K

 Center of mass of the PDF
 First moment of r.v. K

 E[K2] : Second moment,  E[K3] : Third moment

 kf(k)
∞

∞−


∞

∞-
dx xf(x)
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Expectations (example)

 (Ex)  f(x) = 1/6, 0 ≤ x ≤ 6                       E[X] =   

=

=

= 3

dx 
6

1
x.

6

0


6

0

2

2
 

6

1 x








 0 - 
2

36
 

6

1

f(x)

1/6

3 6      x
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Expectations (example)

f(x)=     x, 0 ≤ x ≤ 6    E[X]=   

= 

x                    =                      =  4 

dx  x 
18
1

x.
6

0


f(x)
1/3

3 6

6

0

3

3
 

18

1 x

( )6 62 
18
1

××

18
1
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Expectations (cont’d)

 E[K] for geometric distribution 

p
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Expectations (cont’d)

 E[T] for exponential distribution

E[T] = 

= 
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=
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Second moment (E[X2])

 E[X]: first moment about the origin

 X – E[X]: first moment about the mean

 Second moment about the mean (variance)

 σ =  (standard deviation)

 
∞

∞

∞

∞−

==
-

0  E[X] -dx  f(x)x  dx  f(x) E[X])-(x

2

2 2

2 2

2 2

2

(x-E[X])  f(x) dx 
-

 x  f(x) dx - 2E[X] x f(x) dx  (E[X])  f(x) dx 
- -

 E[X ] - 2E[X]E[X]  (E[X])

 E[X ] - (E[X])

  (measure of the spread of the distribution)σ

∞

∞

∞ ∞ ∞
= +  

−∞ ∞ ∞
= +
=
=

22 (E[X]) - E[X]
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Second moment (E[K2]) (cont’d)

 E[K2] for geometric distribution
E[K2] =

=

=                                        =                                                  =  

 σ2 =       


∞
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Second moment (E[X2]) (example)

 (Ex) f(x) = 1/6 
E[X] =  3                              
E[X] =   

=

=            =  12 

σ2   =  12 – 9  = 3

f(x)

1/6

3 6    x

dx )x(f x
6

0

2


dx 
6
1
 x

6

0

2


6

0

3

3
x 

6
1
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Second moment (E[X2]) (example)

f(x) = (1/18)x E[X]  =  4
E[X2]  = 

=             =  18
x

σ2 = 18 –16 = 2   

dxx   
18
1

x
6

0

2



6

0

4

4
x 

18
1

f(x)

6

1/3
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Second moment (E[X2]) (exercise)

 (Ex 2.20) Find the average of a random variable K whose discrete 
prob function is the Poisson density function.

(Sol)  
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Joint CDF and PDF

 F(x,y)  ≙ P[X ≤ x and Y ≤ y] 
 f(x,y)  ≙ F(x,y)

 (ex) R: rainfall

T: temperature 

yx

2

∂∂
∂

independent



# 56College of Information and Communication Engineering 
SungKyunKwan University

Hee Yong Youn

Joint CDF and PDF (cont’d)
F(r) F(t)

F(r)= F(t)=

f(r)= f(t)=

F(r,t) = sr3(t – 40)2 , s = 8.68×10-12

f(r,t) = 

P[100≤ r ≤ 105 & 50≤ t ≤ 55]  = F(105,55) –F(100,50)
= 0.00226 

40 160
200

r t

3
-6

r
8

10
400,14
40)-(t 2

26- r10 
8
3

400,14
40)-2(t

40)-(t6sr  )40)-(tr3(
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232
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Joint CDF and PDF (example)

 (Em 2.38) The first coin determines the number of subsequent flips 
such that ‘Head’ two more flips and ‘Tail’ one more flip.  

T: number of Tails; C: number of flips

Obtain F(c,t).

H

H (case-1)

H

H
(case-5)

H (case-3)
T (case-2)

T

T (case-6)

T (case-4)

T

F(c,t) t = 0 1 2

c =2

3
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Joint CDF and PDF (example)

 (Em 2.40) Obtain f(c,t).

F(c,t) t = 0 1 2

c =2

3

f(c,t) t = 0 1 2

c =2

3
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Joint CDF and PDF (example)

 (Em 2.39) The dart problem. 

H: the ratio of horizontal distance to the bottom side length

V: the ratio of vertical distance to the left side length

Obtain F(h,v).

 (Em 2.41) Obtain f(h,v).

h

v
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Marginal density function

 To extract the PDF of a single r.v. from a joint PDF, integrate the 
PDF over its range with respect to the r.v.

 ,  f(k) =  

 (Em 2.42) Find f(2) and f(3) of the coin flipping problem.

f(2)=               = f(2,0) +  f(2,1) +  f(2,2) = 0 +1/4 + ¼ = 1/2   

f(3)=

 (Em 2.43) Find f(h) of the dart problem.

f(h)=


∞
∞= - dy y)f(x,  f(x) 

∞

=0i
)i,k(f


=

2

0

),2(
i

if

________),(
1

0
 =dvvhf
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Conditional PDF



 (Em 2.44) Find f(t|c) of the coin flipping problem.

 f(c=2) = 1/2,  f(c=3) = 1/2

f(y)
y)f(x,

  y)|f(x =

f(c,t) t = 0 1 2

c =2 0 1/4 1/4

3 1/8 1/4 1/8

f(t|c) t = 0 1 2

c =2

3
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Independence and unconditioning

 If f(x,y) = f(x) f(y), then f(x) and f(y) are __________

 Unconditioning

f(x) =

f(x,y) is usually _________ to get, while f(x│y) and f(y) are not. 

 (Em 2.45) For the coin flipping problem, obtain f(t = i), (i = 0,1,2). 

f(t=0)=ft=0│c=2f(2) + ft=0│c=3f(3) = 0 x 1/2 + 1/4 x 1/2 = 1/8

f(t=1)=ft=1│c=2f(2) + ft=1│c=3f(3) = ___________________

f(t=2)=ft=2│c=2f(2) + ft=2│c=3f(3) = ___________________
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Stochastic processes

 Process: a series of ______________

 A family of r.v.’s { X(t)|t∈T}, defined on a given probability space,
indexed by the parameter t, where t varies over an index set T 
(discrete time process or continuous time process)

 The values assumed by X(t) are called ______

 Set of  states is _______  ________(discrete (chain) or continuous)

 {X(t,s) | s∈Ω, t∈T}
t = t1 ; Xt1

(s) = X(t1,s)  (random variable)

t = t2 ; Xt2 
(s) = X(t2,s)

s = s1 ; X(t) = X(t, s1)    (sample function)

 Sample function is a realization of the process

 When both sand t are varied, we have the family of random 
variables constituting a stochastic process
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Stochastic processes (example)

X(t,1) X(t,2)

 Select a register s from a set S, and measure the noise X(t,s) at t. 

 At t = t1, count the resistor whose noise is smaller than x1, divide it 
by |S|. Fx(t1)(x1) = P[X(t1) ≤ x1]

 Repeat for t2, t3, ...., and get CDF of  X(t2), X(t3),...

 F(x1,x2) = P[X(t1) ≤ x1 and X(t2) ≤ x2]

 When X(t1,s) = X(t2,s), then the r.v.’s are _________ distributed

t t
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Stochastic processes (cont’d)

 Sample path: the set of ______ of the r.v.’s for particular outcomes 
in a stochastic process and the ____ associated with those outcomes

 (Em 2.46) Rolling two dices

 To describe a stochastic process, two r.v.’s which represent an 
______  _________ and a _______ of the events are required

 These processes are interested since they have _________ property

 k-th interval of exponential (geometric) dist is ______ ( ______) dist

Process type Event counting Time between events

Poisson(continuous) Poisson distribution _________ distribution

Bernoulli(discrete) Binomial distribution _________ distribution
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Renewal theory

 A process is nth order renewal process if the _____ is the same after 
every n events

 Residual lifetime (R) (R is a r.v. representing residual lifetime of a 
r.v. A)

≙

t =  τ – te
r(t|te) =

=              (f is original density)

)t | t-r( eeτ
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>
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et
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Memoryless property

 When the __________   ____________ of a process has the same 
distribution as the original process

 (Em 2.49) Show geometric distribution has memoryless property.

(rk is the number of _________ trials until success while n is the        
number of failures)

 (Ex 2.21) Show exponential distribution has memoryless property.
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Memoryless property (example)

 (ex)  Interarrival time is exponentially distributed with λ = 2
(a) What is the prob. that a job arrives in t =1?

P(T ≤ 1) =

(b) Provided that no job arrives in t =10, what is the prob. of a job 
arrival in t =11?

P(T ≤ 2| 1 < T) =   

= 

)e-(1-1

dt 2e
  

T)P(1
)2TP(1

2-

2

1

2t-
=

<
≤<

2-

2-

4-2-

2-

2

1

2t-

e-1  
e

e - e
  

e

e-
==

 ==1

0

2-1

0

2t-2t- e-1  e- dt  2e
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Memoryless property (example)

 N: r.v. for the no. of jobs arriving in (0,t)

X: r.v. for the interarrival time 

If N is poisson distribution with λt , what is the distribution of X?

(Ans) P[X > t] = P[N = 0] =

F(t) = P[X ≤ t] = 1 –P[X > t] = 1 – e-λt

Poisson arrival ≡ ___________ interarrival

t-e  
0!

0t)(t-e λλλ
=
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Poisson arrival takes a random look

 k arrivals in [0,t]

 Uniform distribution means an arrival in each k subintervals;

prob = 

 An arrival in each subinterval provided k Poisson arrivals in time t

prob = 

k
k

k
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Poisson arrival (example)

 (Em 2.50) At a bus stop, the interarrival time of buses is 
exponentially distributed with a rate of λ. If I walk up to the bus 
stop, how long do I have to wait?

 (Ex 2.22) If buses arrive at intervals of ½ hour and 1 hour 
alternatively, how long would you wait on the average?
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Erlang distribution

 r sequential phases have independent identical  ___________ 
distributions

 F(t) = 1 – ,t ≥ 0, λ > 0, r =1,2,…

f(t) =               

 A component has N peak stresses in (0, t], which is Poisson 
distributed with parameter λt. For component withstanding (r–1) 
peak stresses (so rth occurrence causes _________),
 X: lifetime 

 [X > t] = [N < r] 

 F(t)=1–R(t)=1 –P[X >t]=1–P[N < r]=1– P[N = k]= 1 –

 Exponential is a special case of Erlang with r = ____ 
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Hypoexponential distribution

 Similar to Erlang distribution, but the time in each sequential 
phase is independent and ___________  distributed 

 2-stage: X~HYPO (λ1,λ2), λ1≠λ2

f(t) = 

F(t) = 1–

0t  , )e-e(
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Hyperexponential distribution

 A process consisting of alternate phases, while experiencing one 
and only one of the independent ____________ distributed phases

 f(t) = 

F(t) =                               

 =>>>
==

k

1i
iii
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Normal (Gaussian) distribution 

 Central limit theorem: Mean of a sample of n mutually 
independent r.v.’s is normally distributed in the limit n→∞

 f(x) = 

 X~N(µ,σ2) 
 (ex) errors of measurement

 No closed form F(x); use table for Z~N(0,1) (standard normal dist)

 FZ(z) = 

 FZ (– z) = 1 –FZ (z); FX(x) = FZ

 (ex) N(200,256) signal is received. What is the prob that the signal is 
greater than 240mV?

(Ans) P[X> 240] = 1 –P[X ≤ 240] = 1 –FZ                      = 1 –FZ (2.5)

= 0.0062 

mean: ,x  - ,e
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Standard normal distribution table
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Weibull distribution 

 f(t) =

 F(t) =

 Fault modeling

 Exponential dist is a special case of Weibull dist with α = 1 

α
λαλα tet −− )1(

α
λte−−1




