Lecture 2 : Probability Theory and Random Variables

Hee Yong Youn
School of Information and Communication Engineering Sungkyunkwan University
Suwon, Korea
youn@ece.skku.ac.kr

Probability theory

\square Probability theory as a model
\square Functional aspect (not scale_)
because deals with the process of the object
\square Abstract representation (not concrete_) because averages large number of non-deterministic outcomes
a Analytical techniques (neither physical nor simulation) because uses set theory
\square A series of observations can characterize the relative_frequency_of the possible outcomes (ex) Program execution time

Experiment

\square Experiment
\square Discrete/ continuous outcomes
\checkmark Discrete outcomes: rolling a dice ($\quad 6$
\checkmark Continuous outcomes: uncountably infinite no. of outcomes even with the range
\square Element : _instance of an object of interest (ex) Object: color

Element; red, yellow, ...

Set theory notation

\square Set theory notation
\square Sample space (or _universe) (Ω): The universal set containing all possible outcomes considered
$\square\{a, b\}$: a set of _distinct elements, a and b
$\square[a, b]($ or $(a, b))$: a set of infinite, uncountable values between and including_(or excluding) a and b
\square Empty set (ϕ): a set of no element
\square Union (\cup)
\square Intersection (\cap)
\square Complement (')
\square Membership(ϵ)
\square Subset (С)

Set relationships

\square Set relationships
\square Mutually _exclusive : $\quad \boldsymbol{A} \cap \boldsymbol{B}=\phi$
\square Mutually exhaustive: $\quad \boldsymbol{A} \cup \boldsymbol{B}=\Omega$
\square Partition : mutually exclusive and exhaustive
\square Interpretation using Venn diagram

Law of set theory

\square Law of set theory
\square Commutative (for same operators): $\quad \boldsymbol{A} \cap B=B \cap A$
\square Associative (for same operators): $\quad A \cup(B \cup C)=(A \cup B) \cup C$
\square Distributive (for different operators): $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
\square Identities: $A \cap \Omega=A, A \cup \underline{\phi}=A$
\square Inverse: $\left(A^{\prime}\right)^{\prime}=\boldsymbol{A}$
$A \cup A^{\prime}=\Omega$ (inclusion), $A \cap A^{\prime}=\phi$ (exclusion)
\square DeMorgan's Law: $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

Sample space \& event

\square Sample space
\square For an experiment
\square Set of all possible outcomes
(ex) tossing two coins: $\{\ldots$
\square Event
\square A set of _outcomes which is a subset of Ω
\square (ex) The faces are not same in tossing two coins: $\{\ldots$

Power set \& probability measure

\square Power set of Set- A : a set of all possible _subsets of A
\square Probability measure (P) : the fraction of a large number of repetitions (relative frequency_) that a prescribed event or outcome may occur

Law of probability

\square Law of probability

- $P[\Omega]=\underline{1}$
$\square \mathbf{0} \leq P[A] \leq 1$ for $A \subseteq \Omega$
$\square P[A \cup B]=P[A]+P[B]-P[\underline{\mathrm{~A} \cap \mathrm{~B}}]$ for $A, B \subseteq \Omega$
व $\boldsymbol{P}\left[\bigcup_{m=1}^{\infty} A_{m}\right]=\sum_{m=1}^{\infty} P\left[A_{m}\right]$ if $\boldsymbol{A}_{\boldsymbol{i}}$'s are mutually disjoint

Conditional probability

\square Conditional Probability
$\square \mathbf{P}[A \mid B]=\frac{\mathbf{P}[\mathbf{A} \cap \mathbf{B}]}{\mathbf{P}[\mathbf{B}]}$
\square (Em 2.21) Two coins are flipped. What is the prob. of having 2 heads if at least one is head?

```
\(A\) : two heads; \(P[A]=1 / 4\)
```

B : at least one is head; $P[B]=3 / 4$
$P[A \cap B]=1 / 4$
$P[A \mid B]=P[A \cap B] / P[B]=(1 / 4) /(3 / 4)=1 / 3$

Probability tree

\square Probability tree

Probability tree (exercise)

\square (Ex 2.9) Prob. of drawing 2 white balls from a bucket containing 3 white balls and 2 red balls without replacement?

Independence

\square Independence: $A, B \subseteq \Omega$ are independent iff $P[A \cap B]=P[A] P[B]$

- (Proof)

If A and B are independent, $\mathrm{P}[A \mid B]=\mathrm{P}[A]$----(a)
By definition, $\mathbf{P}[A \mid B]=\frac{\mathbf{P}(\mathbf{A} \cap B)}{\mathbf{P (B)}} \quad \cdots-\cdots-\cdots-\cdots--\cdots(b)$
$(\mathbf{a})=(b)$ results in
$\mathbf{P}[A]=\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$

Finally, $P[A \cap B]=P[A] P[B]$

Independence (example)

\square (Em 2.23) When we toss two coins, what is the probability getting Head on the second coin given that Tail on the first coin?
A : getting Head on the second coin; $P[A]=\{\mathrm{TH}, \mathrm{HH}\}=1 / 2$
B : Tail on the first coin; $P[B]=\{\mathrm{TT}, \mathrm{TH}\}=1 / 2$

$$
P[A \mid B]=P[A \cap B] / P[B]=(1 / 4) /(1 / 2)=1 / 2=P[A]
$$

Independence (exercise)

$\square(E x 2.10)$ If A and B are independent, what is $P[A \cup B]$? Here $P[A]$ $=0.2$ and $P[B]=0.3$.

$$
P[A \cup B]=P[A]+P[B]-P[A \cap B]=0.5-0.2 \times 0.3=0.44
$$

Independence of a set of events

Independence of a set of events
\square Mutually independent
\square Pairwise independent
\square (ex) Experiment: tossing 2 dices
Event A : $1^{\text {st }}$ dice $=1,2$, or 3
Event $B: 1^{\text {st }}$ dice $=3,4$, or 5
Event C : $\Sigma=9$
ㅁ $A=\left\{\left(\mathbf{1},{ }^{*}\right),\left(\mathbf{2},{ }^{*}\right),\left(\mathbf{3},{ }^{*}\right)\right\}, P[A]=\underline{1 / 2}$

$$
\boldsymbol{B}=\{(\mathbf{3}, *),(4, *),(5, *)\}, \boldsymbol{P}[\boldsymbol{B}]=1 / 2
$$

$$
C=\{(\mathbf{3}, \mathbf{6}),(\mathbf{4}, \mathbf{5}),(\mathbf{5}, 4),(6,3)\}, P[C]=1 / 4
$$

$$
\boldsymbol{A} \cap \boldsymbol{B}=\{\xlongequal{(3, *)}\}, \boldsymbol{P}[\boldsymbol{A} \cap \boldsymbol{B}]=\underline{1 / 6} \neq P[A] P[B]
$$

$$
\boldsymbol{A} \cap \boldsymbol{C}=\{\xlongequal{(3,6)}\}, \boldsymbol{P}[\boldsymbol{A} \cap \boldsymbol{C}]=\underline{1 / 36} \neq P[A] P[C]
$$

$$
\boldsymbol{B} \cap \boldsymbol{C}=\left\{_(3,6),(4,5),(5,4) \quad\right\}, \boldsymbol{P}[\boldsymbol{B} \cap \boldsymbol{C}]=\underline{1 / 12} \neq P[B] P[C]
$$

$$
\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}=\{\underline{(3,6)}\}, \boldsymbol{P}[\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}]=\underline{1 / 36}=P[A] P[B] P[C]
$$

The events are not mutually independent since they are not pairwise independent
\square Does pairwise independency guarantee mutual independency?

Bayes' theorem

\square Bayes' Theorem (Posteriori probability)

$$
\mathbf{P}\left[\mathbf{A}_{i} \mid \mathbf{B}\right]=\frac{\mathbf{P}\left[\mathbf{A}_{\mathbf{i}} \cap \mathbf{B}\right]}{\mathbf{P}[\mathbf{B}]}=\frac{\mathbf{P}\left[\mathbf{A}_{\mathbf{i}}\right] \mathbf{P}\left[\mathbf{B} \mid \mathbf{A}_{\mathbf{i}}\right]}{\sum_{\mathbf{j}} \mathbf{P}\left[\mathbf{A}_{\mathbf{j}} \cap \mathbf{B}\right]}=\frac{\mathbf{P}\left[\mathbf{A}_{\mathbf{i}}\right] \mathbf{P}\left[\mathbf{B} \mid \mathbf{A}_{\mathbf{i}}\right]}{\sum_{\mathbf{j}} \mathbf{P}\left[\mathbf{A}_{\mathbf{j}}\right] \mathbf{P}\left[\mathbf{B} \mid \mathbf{A}_{\mathbf{i}}\right]}
$$

\square Conditions for applying the theorem
i) Partition by A_{i} 's
ii) $\boldsymbol{P}[\underline{B}] \neq \mathbf{0}$

Bayes' theorem (example)

\square (Em 2.24) Three programmers submit jobs to a system, and sometimes their jobs fail to be executed. Assume that a job failed to be executed. What is the prob. that Programmer- 1 sent the job?

Event $-A_{i}$: program was submitted by Programmer- i
Event-B: program failed

$$
\begin{aligned}
& P\left[A_{1}\right]=0.2, P\left[A_{2}\right]=0.3, P\left[A_{3}\right]=0.5 \\
& P\left[B \mid A_{1}\right]=0.1, P\left[B \mid A_{2}\right]=0.7, P\left[B \mid A_{3}\right]=0.1
\end{aligned}
$$

$$
\begin{aligned}
P\left[A_{1} \mid B\right] & =\left(P\left[A_{1}\right] P\left[B \mid A_{1}\right]\right) /\left(P\left[A_{1}\right] P\left[B \mid A_{1}\right]+P\left[A_{2}\right] P\left[B \mid A_{2}\right]+P\left[A_{3}\right] P\left[B \mid A_{3}\right]\right. \\
& =(0.2 \times 0.1) /(0.2 \times 0.1+0.3 \times 0.7+0.5 \times 0.1)=0.02 /(0.02+0.21+0.05) \\
& =0.02 / 0.28=0.071
\end{aligned}
$$

Combinatorics

\square Combinatorics:
\square Sum (Product) rule:
The total number of outcomes is the sum (product) of the number of outcomes of each \qquad if they are \qquad (combined).

Combinatorics (exercise)

\square (Ex 2.11) What is the probability to pick up an ace card after two decks of cards are shuffled together?
\square (Ex 2.12) How many different combinations of cards do we have by picking one card from each of two decks of cards?

Sampling with replacement

\square Sampling with replacement: N^{R}
$\square N$: number of elements, R : length of sequence (no. of samplings)
(ex) $N=4$ for $\{1,2,3,4\}, R=2$
$\left.\begin{array}{llll}11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44\end{array}\right\} \quad 4 \times 4=4^{2}$

Sampling without replacement

\square Sampling without replacement: $\frac{\mathrm{N}!}{(\mathrm{N}-\mathrm{R})!}$

- (ex)
$\left.\begin{array}{llll}12 & 13 & 14 & \\ 21 & & 23 & 24 \\ 31 & 32 & & 34 \\ 41 & 42 & 43 & \end{array}\right\} 4 \times 3=\frac{4!}{(4-2)!}$
$\square{ }_{N} P_{R}=N(N-1) \ldots(N-(R-1))$
\square (Ex 2.13) How many different combinations of cards do we have when we draw five cards from a deck of cards?

Permutations \& Combinations

\square Permutations: N ! (Sampling without replacement for length N)

- (ex) $4 \times 3 \times 2 \times 1$
\square Combinations: $\binom{\mathbf{N}}{\mathbf{R}}=\frac{\mathrm{N}!}{\mathrm{R}!(\mathbf{N}-\mathbf{R})!}$
$\square{ }_{N} C_{R}$: Binomial coefficient of R th term of $(x+y)^{N}$
(ex) $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

$$
\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}
$$

\square Size of power set: $\quad \sum_{R=0}^{N}\binom{\mathrm{~N}}{\mathrm{R}}=2^{N}$

$$
\begin{aligned}
& (x+y)^{N}=\binom{N}{0} x^{N} y^{0}+\binom{N}{1} x^{N-1} y^{1}+\binom{N}{2} x^{N-2} y^{2}+\ldots \quad+\binom{N}{N} x^{0} y^{N} \\
& \sum_{R=0}^{N}\binom{N}{R}=\binom{N}{0}+\binom{N}{1}+\ldots+\binom{N}{N}=\left.(x+y)^{N}\right|_{x=\operatorname{land} y=1}=2^{N}
\end{aligned}
$$

Combinations

\square (Ex 2.14) How many different poker hands do we have if we draw five cards from a deck of cards?

Random variables

\square Random Variables (X)

- A \qquad that assigns a real number to each possible \qquad in the sample space
$\square(\mathrm{ex}) X$: number of heads in tossing two coins

Outcome	Probability	Value of X	Prob[X]
H	1/4	2	$\operatorname{rob}[X=2]=$

T	$1 / 4$	1	$\operatorname{Prob}[X=1]=$
H	$1 / 4$	1	
T	$1 / 4$	0	$\operatorname{Prob}[X=0]=\ldots$

Notation $[X=x]=\{s \in \Omega \mid X(s)=x\}$

- (ex) $[X=1]=\{H T \mid X(H T)=1\}$
\square Random variable carries info about events using \qquad in order to simplify the manipulation of them

Random variables (cont'd)

\square (Em 2.30) In dart throwing random variable x is the distance from the left side, l, normalized by the width, w. What is the value of x ?
\square (Ex 2.15) What is the value of random variable, x, which is the sum of the dots of two dices rolled?

Cumulative distribution function

\square Cumulative distribution function (CDF), F

- $F(x)=P[X \leq x]$
$\square(e x)$ Coin tossing

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{l}
0, x<0 \\
1 / 4,0 \leq x<1 \\
3 / 4,1 \leq x<2 \\
1,2 \leq x
\end{array}\right. \\
& \left\{\begin{array}{l}
F(-\infty)=0 \\
F(\infty)=- \\
F\left(x_{1}\right) \leq F\left(x_{2}\right), x_{1}<x_{2}
\end{array}\right.
\end{aligned}
$$

Cumulative distribution function (exercise)

\square (Ex 2.16) Define the CDF of x of the dart problem.

Probability density function

\square Probability density function (PDF), f
$\square f(x)=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}(\mathrm{x})$ or $\mathrm{F}(\mathrm{x})=\int_{-.-\infty}^{x} \mathrm{f}(\mathrm{y}) \mathrm{dy}$
\square (ex) Coin tossing

- when a r.v. is discrete

$$
\begin{aligned}
& f(x)=P[X=x] \\
& =\int_{\mathrm{x}} \mathrm{f}(\mathrm{y}) \mathrm{dy} \\
& f(x)=\left\{\begin{array}{l}
\underset{1 / 2}{ }, x=0,2 \\
0, \quad \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

\square Since $F(\infty)=1, \quad \int_{-\infty}^{\infty} f(x) d x=1$
\square Since $F(x)$ is nondecreasing, $f(x) \geq 0$

Distribution of random variable

\square Specified by the condition under which the r.v. is defined
\square Geometric/ Binomial/ Exponential/ Poisson distribution
\square Discrete/ continuous, finite/ infinite distribution

Geometric distribution

\square Experiment: a trial succeeds (1) with probability p or fails(0) with probability ($1-p$). The trial continues until it succeeds.
$\square \Omega:\left\{\mathbf{0}^{i-1} 1 \mid i=1,2,3, \ldots\right\}$
\square r.v. K : no. of trials \qquad the first success

$P[K=k]=(1-p)^{k-1} p$ for $k=1,2, \ldots$
$\square F(k)=P[K \leq k]=\sum_{i=1}^{k}(1-p)^{i-1} p=1-(1-p)^{k} \quad$ for $k \geq 1$ (Proof)

$$
\begin{aligned}
& \text { Let } q=1-p \\
& \sum_{i=1}^{k}(1-p)^{i-1} p=\sum_{i=1}^{k} q^{i-1}(1-q)=\sum_{i=1}^{k}\left(q^{i-1}-q^{i}\right)= \\
& \left(q^{0}-q^{1}\right)+\left(q^{1}-q^{2}\right)+\ldots+\left(q^{k-1}-q^{k}\right)=1-q^{k}
\end{aligned}
$$

Geometric distribution

Modified geometric distribution

\square r.v.: no. of trials \qquad the first success
$\square P[K=k]=(1-p)^{k} p \quad$ for $k=\ldots, 2,3, \ldots$
$\square F(k)=P[K \leq k]=\sum_{\mathrm{i}=0}^{\mathrm{k}}(1-p)^{i} p=1-(1-p)^{k+1} \quad$ for $k \geq 0$
(Proof)
Let $q=1-p$
$\sum_{i=0}^{k}(\mathbf{1}-\boldsymbol{p})^{i} p=\sum_{i=0}^{k} \boldsymbol{q}^{i}(\mathbf{1}-\boldsymbol{q})=\sum_{i=0}^{k}\left(\boldsymbol{q}^{i}-\boldsymbol{q}^{i+1}\right)=$

$$
\left(q^{0}-q^{1}\right)+\left(q^{1}-q^{2}\right)+\ldots+\left(q^{k}-q^{k+1}\right)=\mathbf{1}-\boldsymbol{q}^{k+1}
$$

Binomial distribution ($b(k ; N, p)$)

\square Experiment: a trial succeeds (1) with prob. p or fails(0) with prob. $(1-p)$. The trial continues for N times.
$\square \Omega:\left\{0^{i} 1^{N-i} \mid i=0,1, \ldots, N\right\}$r.v. K : no. of successes out of \boldsymbol{N} trials
$\square P[K=k]=\binom{N}{k} p_{k}^{k}(1-p)^{N-k}$ for $0 \leq k \leq N$
$\square F(k)=P[K \leq k]=\sum_{i=0}^{k}\binom{N}{i} p^{i}(1-p)^{N-i} \quad$ (no closed form solution)

Binomial distribution ($b(k ; N, p)$)

Poisson distribution

\square Experiment: success occurs at the rate of λ
$\square \Omega$: $\{0,1,2, \ldots$ successes $\}$
\square r.v. K: no. of successes in time T
$\square P[K=k$ in $T]=\frac{(\lambda T)^{k}}{k!} \mathbf{e}^{-\lambda T}$
$\square \boldsymbol{F}(\boldsymbol{k})=\sum_{\mathrm{i}=0}^{\mathrm{k}} \frac{(\lambda \mathbf{T})^{\mathrm{k}}}{\mathrm{i}!} \mathbf{e}^{-\lambda \mathrm{T}}$

Poisson distribution (cont'd)

Poisson distribution (cont'd)

$$
\begin{aligned}
& P[K \text { in } n]=\binom{\mathbf{n}}{\mathbf{k}}\left(\frac{\lambda T}{\mathrm{n}}\right)^{\mathrm{k}}\left(1-\frac{\lambda T}{\mathrm{n}}\right)^{n-\mathrm{k}} \\
& =\frac{\mathbf{n}!}{\mathbf{k}!(\mathbf{n}-\mathbf{k})!} \frac{(\lambda \mathbf{T})^{k}}{\mathbf{n}^{\mathrm{k}}}\left(\mathbf{1}-\frac{\lambda \mathbf{T}}{\mathbf{n}}\right)^{\mathrm{n} \cdot \mathrm{k}} \\
& =\frac{\mathbf{n}(n-1) \ldots(n-k+1)(n-k)!}{k!(n-k)!} \frac{(\lambda T)^{k}}{n^{k}}\left(1-\frac{\lambda T}{n}\right)^{n}\left(1-\frac{\lambda T}{n}\right)^{-k} \\
& =\frac{n^{k} 1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots \cdot\left(1-\frac{k-1}{n}\right)}{k!n^{k}}(\lambda T)^{k}\left(1-\frac{\lambda T}{n}\right)^{-k}\left(\left(1-\frac{\lambda T}{n}\right)^{-\frac{2 \pi}{T}}\right)^{-k T}
\end{aligned}
$$

* $\lim _{n \rightarrow \infty}\left(1-\frac{a}{n}\right)^{-\frac{n}{a}}=e$
$P[k$ in $T]=\lim _{n \rightarrow \infty} P[k$ in $n]=\frac{1}{k!}(\lambda T)^{k} 1 \cdot e^{-\lambda T}$

Poisson distribution (cont'd)

Rule of thumb: Use Poisson for binomial if $\boldsymbol{n} \geq 20$ and $\boldsymbol{p} \leq \mathbf{0 . 0 5}$
$\square(\mathbf{e x})$

k	$b(k ; 5,0.2)$	$b(k ; 20,0.05)$	Poisson $(k ; \lambda T=1)$
0	0.328	0.359	0.368
1	0.410	0.377	0.368
2	0.205	0.189	0.184
3	0.051	0.060	0.061

Exponential distribution

\square Continuous case of \qquad distribution
\square Experiment: success occurs at the rate of λ
$\square \Omega:\{t \mid t \geq 0\}$
\square r.v. t : time to the first success
$\square F(t)=P[T \leq t]=1-\mathrm{e}^{-\lambda t} \quad$ for $0 \leq t$
$\square f(t)=\lambda \mathrm{e}^{-\lambda t}$

\square Application: interarrival time, service time, time to failure, repair time

Conditional PDF

$$
\square f(x \mid A)=\frac{\mathrm{f}(\mathbf{x})}{\mathrm{P}[\mathrm{~A}]}, \quad x \in A
$$

Using CDF and PDF

\square Using CDF and PDF

\square Calculate prob. of events and expectations

- Use \qquad for prob. and \qquad for expectation
$\square P[a<X \leq b]=P[X \leq b]-\overline{P[X \leq b}]=F(b)-F(a)=\int_{a}^{b} f(\mathbf{x}) \mathrm{dx}$ or $\sum_{i=a+1}^{b} f(\mathbf{i})$

Using CDF and PDF (cont'd)

Using CDF (exercises)

\square (Ex 2.17) What is the prob that a dart lands in the middle third of the dart board?
\square (Ex 2.18) What is the prob that a dart lands precisely in the middle of the dart board?
\square (Ex 2.19) What is the prob that for a geometrically distributed random variable, the value is 4,5 , or 6 ?

Expectations

$\square E[K]=\sum_{-\infty}^{\infty} \mathrm{kf}(\mathrm{k}), \quad E[X]=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}$

$\square E[K]$
Expected value (average) of r.v. K

- Center of mass of the PDF
\square First moment of r.v. K
$\square E\left[K^{2}\right]$: Second moment, $E\left[K^{3}\right]$: Third moment

Expectations (example)

$\square(E x) f(x)=1 / 6,0 \leq x \leq 6$

$$
\begin{aligned}
\boldsymbol{E}[X] & =\int_{0}^{6} \mathrm{x} \cdot \frac{1}{6} \mathrm{dx} \\
& =\left.\frac{1}{6} \frac{\mathrm{x}^{2}}{2}\right|_{0} ^{6} \\
& =\frac{1}{6}\left(\frac{36}{2}-0\right) \\
& =3
\end{aligned}
$$

Expectations (example)

$$
\begin{aligned}
\boldsymbol{E}[X] & =\int_{0}^{6} \mathrm{x} \cdot \frac{1}{18} \mathrm{xdx} \\
& =\left.\frac{1}{18} \frac{\mathrm{x}^{3}}{3}\right|_{0} ^{6} \\
& =\frac{\mathbf{1}}{\mathbf{1 8}}(\mathbf{2} \times \mathbf{6} \times \mathbf{6})=4
\end{aligned}
$$

Expectations (cont'd)

$\square E[K]$ for geometric distribution

$$
\begin{aligned}
E[K] & =\sum_{k=0}^{\infty} k(1-p)^{k-1} p \\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1}=-p \sum_{k=1}^{\infty} \frac{d}{d p}(1-p)^{k} \\
& =-p \frac{d}{d p} \sum_{k=1}^{\infty}(1-p)^{k}\left(* \sum_{i=0}^{\infty} x^{i}=\frac{1}{x}, x<1^{*}\right) \\
& =-p \frac{d}{d p}\left[\frac{1}{p}-1\right]\left(* \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} *\right) \\
& =-p \frac{-1}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

Expectations (cont'd)

$\square E[T]$ for exponential distribution

$$
\begin{aligned}
E[T] & =\int_{0}^{\infty} t \lambda \mathbf{e}^{-\lambda t} \mathbf{d t}=-\lambda \int_{0}^{\infty}\left(\frac{\mathbf{d}}{\mathbf{d} \lambda} \mathrm{e}^{-\lambda t}\right) \mathbf{d t}=-\lambda \frac{\mathbf{d}}{\mathbf{d} \lambda} \int_{0}^{\infty} \mathbf{e}^{-\lambda t} \mathbf{d t} \\
& =-\lambda \frac{\mathbf{d}}{\mathbf{d} \lambda}\left(\left.\frac{\mathbf{e}^{-\lambda t}}{-\lambda}\right|_{0} ^{\infty}\right)=-\lambda \frac{\mathbf{d}}{\mathbf{d} \lambda}\left(\frac{\mathbf{1}}{\lambda}\right)=-\lambda \frac{-1}{\lambda^{2}}=\frac{\mathbf{1}}{\lambda}
\end{aligned}
$$

Second moment $\left(E\left[X^{2}\right]\right)$

$\square E[X]:$ first moment about the origin
$\square X-E[X]$: first moment about the mean

$$
\int_{-\infty}^{\infty}(x-E[X]) f(x) d x=\int_{-\infty}^{\infty} x f(x) d x-E[X]=0
$$

\square Second moment about the mean (variance)

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty}(\mathrm{x}-\mathrm{E}[\mathrm{X}])^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\int_{-\infty}^{\infty} \mathrm{x}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}-2 \mathrm{E}[\mathrm{X}] \int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}+(\mathrm{E}[\mathrm{X}])^{2} \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-2 \mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{X}]+(\mathrm{E}[\mathrm{X}])^{2} \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2} \\
& =\sigma^{2}(\text { measure of the spread of the distribution) } \\
& \square \sigma=\sqrt{\mathbf{E}[\mathbf{X}]^{2}-(\mathbf{E}[\mathrm{X}])^{2} \quad \text { (standard deviation) }}
\end{aligned}
$$

Second moment $\left(E\left[K^{2}\right]\right)\left(\right.$ cont'd $\left.^{\prime}\right)$

$\square E\left[K^{2}\right]$ for geometric distribution

$$
\begin{aligned}
E\left[K^{2}\right] & =\sum_{k=0}^{\infty} k^{2}(1-p)^{k-1} p=p \sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} \\
& =p \sum_{k=2}^{\infty} k^{2}(1-p)^{k-1}+p \\
& =p \sum_{k=2}^{\infty}\left(k^{2}-k\right)(1-p)^{k-1}+p+p \sum_{k=2}^{\infty} k(1-p)^{k-1} \\
& =p(1-p) \sum_{k=2}^{\infty}\left(k^{2}-k\right)(1-p)^{k-2}+p+p\left(\frac{1}{p^{2}}-1\right) \\
& =p(1-p) \sum_{k=2}^{\infty} \frac{d^{2}}{d^{2} p}(1-p)^{k}+\frac{1}{p} \\
& =p(1-p) \frac{d^{2}}{d^{2} p}\left[\frac{1}{p}-(1-p)-1\right]+\frac{1}{p} \\
& =p(1-p) \frac{d}{d p}\left[-\frac{1}{p^{2}}+1\right]+\frac{1}{p}=p(1-p)\left(-\frac{-2 p}{p^{4}}\right)+\frac{1}{p}=\frac{2(1-p)}{p^{2}}+\frac{1}{p}=\frac{2-p}{p^{2}} \\
\square \sigma^{2}= & \frac{2(1-p)}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2-2 p+p-1}{p^{2}}=\frac{1-p}{p^{2}}
\end{aligned}
$$

Second moment ($E\left[X^{2}\right]$) (example)

$\square(E x) f(x)=1 / 6$

$$
\begin{aligned}
E[X] & =3 \\
E[X] & =\int_{0}^{6} x^{2} f(x) d x \\
& =\int_{0}^{6} x^{2} \frac{1}{6} d x \\
& =\left.\frac{1}{6} \frac{x^{3}}{3}\right|_{0} ^{6}=12 \\
\sigma^{2} & =12-9=3
\end{aligned}
$$

Second moment ($E\left[X^{2}\right]$) (example)

$$
\begin{aligned}
& E[X]=4 \\
& \begin{array}{l}
E\left[X^{2}\right]=\int_{0}^{0} \mathbf{x}^{2} \frac{1}{18} \mathrm{xdx} \\
=\left.\frac{1}{18} \frac{\mathbf{x}^{4}}{\mathbf{4}}\right|_{0} ^{6}=18 \\
\sigma^{2}=18-16=2
\end{array}
\end{aligned}
$$

Second moment ($E\left[X^{2}\right]$) (exercise)

\square (Ex 2.20) Find the average of a random variable K whose discrete prob function is the Poisson density function.
(Sol)
$a=\lambda \tau$, Differentiate both sides on $a: e^{a}=\sum_{k=0}^{\infty} \frac{a^{k}}{k!}$
$e^{a}=\sum_{k=0}^{\infty} k \frac{a^{k-1}}{k!}=\frac{1}{a} \sum_{k=0}^{\infty} k \frac{a^{k}}{k!} \quad \therefore \sum_{k=1}^{\infty} k \frac{a^{k}}{k!}=a e^{a}$
$E[K]=\sum_{k=1}^{\infty} k f(k)=\sum_{k=1}^{\infty} k \frac{a^{k}}{k!} e^{-a}=a e^{a} e^{-a}=a$
Differentiate both sides on $a: e^{a}=\sum_{k=0}^{\infty} k \frac{a^{k-1}}{k!}$
$e^{a}=\sum_{k=1}^{\infty} k(k-1) \frac{a^{k-2}}{k!}=\frac{1}{a^{2}} \sum_{k=1}^{\infty} k^{2} \frac{a^{k}}{k!}-\frac{1}{a^{2}} \sum_{k=1}^{\infty} k \frac{a^{k}}{k!}=\frac{1}{a^{2}} \sum_{k=1}^{\infty} k^{2} \frac{a^{k}}{k!}-\frac{1}{a^{2}} a e^{a}=\frac{1}{a^{2}} \sum_{k=1}^{\infty} k^{2} \frac{a^{k}}{k!}-a^{-1} e^{a}$
$E\left[K^{2}\right]=\sum_{k=1}^{\infty} k^{2} \frac{\boldsymbol{a}^{k}}{k!} e^{-a}=e^{-a}\left(e^{a}+a^{-1} e^{a}\right) a^{2}=a^{2}+a$

Joint CDF and PDF

$\square F(x, y) \hat{=} P[X \leq x$ and $Y \leq y]$
$\square f(x, y) \hat{=} \frac{\partial^{2} F(x, y)}{\partial \mathrm{x} \partial \mathrm{y}}$
$\square(\mathrm{ex}) R$: rainfall
T : temperature $\}$ independent

Joint CDF and PDF (cont'd)

$$
\begin{aligned}
& F(r)=\frac{10^{-6}}{8} \mathbf{r}^{3} \\
& F(t)=\frac{(\mathbf{t}-\mathbf{4 0})^{2}}{14,400} \\
& f(r)=\frac{3}{8} 10^{-6} \mathrm{r}^{2} \quad f(t)=\frac{2(\mathrm{t}-40)}{14,400} \\
& F(r, t)=s r^{3}(t-40)^{2}, s=8.68 \times 10^{-12} \\
& f(r, t)=\frac{\partial^{2}\left(\mathbf{s r}^{3}(\mathbf{t}-40)^{2}\right)}{\partial \mathrm{r} \partial \mathrm{t}}=\mathrm{s} \frac{\partial}{\partial \mathrm{t}}\left(3 \mathrm{r}^{2}(\mathrm{t}-40)^{2}\right)=6 \mathrm{sr}^{2}(\mathrm{t}-40) \\
& P[100 \leq r \leq 105 \& 50 \leq t \leq 55]=F(105,55)-F(100,50) \\
& =0.00226
\end{aligned}
$$

Joint CDF and PDF (example)

\square (Em 2.38) The first coin determines the number of subsequent flips such that 'Head' two more flips and 'Tail' one more flip.
T : number of Tails; C : number of flips
Obtain $F(c, t)$.

$\boldsymbol{F}(\boldsymbol{c}, \boldsymbol{t})$	$\boldsymbol{t}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\boldsymbol{c = 2}$			
$\mathbf{3}$			

Joint CDF and PDF (example)

$\square(\operatorname{Em} 2.40)$ Obtain $f(c, t)$.

$F(c, t)$	$t=0$	$\mathbf{1}$	$\mathbf{2}$
$c=\mathbf{2}$			
$\mathbf{3}$			

$f(c, t)$	$t=0$	$\mathbf{1}$	$\mathbf{2}$
$c=\mathbf{2}$			
$\mathbf{3}$			

Joint CDF and PDF (example)

\square (Em 2.39) The dart problem.
H : the ratio of horizontal distance to the bottom side length
V : the ratio of vertical distance to the left side length
Obtain $F(h, v)$.

$\square($ Em 2.41) Obtain $f(h, v)$.

Marginal density function

\square To extract the PDF of a single r.v. from a joint PDF, integrate the PDF over its range with respect to the r.v.
$\square \mathbf{f}(\mathbf{x})=\int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x}, \mathbf{y}) \mathrm{dy}, f(k)=\sum_{\mathrm{i}=0}^{\infty} \mathbf{f}(\mathbf{k}, \mathbf{i})$
\square (Em 2.42) Find $f(2)$ and $f(3)$ of the coin flipping problem. $f(2)=\sum_{i=0}^{2} f(2, i)=f(2,0)+f(2,1)+f(2,2)=0+1 / 4+1 / 4=1 / 2$
$f(3)=$
\square (Em 2.43) Find $f(h)$ of the dart problem.

$$
f(h)=\int_{0}^{1} f(h, v) d v=
$$

Conditional PDF

$\square \mathbf{f}(\mathbf{x} \mid \mathbf{y})=\frac{f(\mathbf{x}, \mathbf{y})}{\mathrm{f}(\mathbf{y})}$
\square (Em 2.44) Find $f(t \mid c)$ of the coin flipping problem.

$\boldsymbol{f}(\boldsymbol{c}, \boldsymbol{t})$	$\boldsymbol{t}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\boldsymbol{c}=\mathbf{2}$	0	$1 / 4$	$1 / 4$
$\mathbf{3}$	$1 / 8$	$1 / 4$	$1 / 8$

$\square f(c=2)=1 / 2, f(c=3)=1 / 2$

$f(t \mid c)$	$t=0$	1	2
$c=2$			
3			

Independence and unconditioning

\square If $f(x, y)=f(x) f(y)$, then $f(x)$ and $f(y)$ are
\square Unconditioning
$f(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{-\infty}^{\infty} f(x \mid y) f(y) d y$
$f(x, y)$ is usually \qquad to get, while $f(x \mid y)$ and $f(y)$ are not.
$\square(E m$ 2.45) For the coin flipping problem, obtain $f(t=i),(i=0,1,2)$.
$f(t=0)=f_{t=0}\left|c=2 f(2)+f_{t=0}\right| c=3(3)=0 \times 1 / 2+1 / 4 \times 1 / 2=1 / 8$
$f(t=1)=f_{t=1 \mid c=2} f(2)+f_{t=1 \mid c=3} f(\mathbf{3})=$ \qquad $f(t=2)=f_{t=2 \mid c=2} f(2)+f_{t=2 \mid c=3} f(3)=$ \qquad

Stochastic processes

Process: a series of \qquad
\square A family of r.v.'s $\{X(t) \mid t \in T\}$, defined on a given probability space, indexed by the parameter t, where t varies over an index set T (discrete time process or continuous time process)The values assumed by $X(t)$ are called \qquad
\square Set of states is \qquad
\qquad (discrete (chain) or continuous)
$\square\{X(t, s) \mid s \in \Omega, t \in T\}$
$t=t_{1} ; X_{t_{1}}(s)=X\left(t_{1}, s\right) \quad$ (random variable)
$t=t_{2} ; X_{t_{2}}(s)=X\left(t_{2}, s\right)$
$s=s_{1} ; X(t)=X\left(t, s_{1}\right) \quad$ (sample function)
\square Sample function is a realization of the process
\square When both s and t are varied, we have the family of random variables constituting a stochastic process

Stochastic processes (example)

\square Select a register s from a set S, and measure the noise $X(t, s)$ at t.
\square At $t=t_{1}$, count the resistor whose noise is smaller than x_{1}, divide it by $|S| . \mathrm{F}_{\mathrm{x}\left(t_{1}\right)}\left(x_{1}\right)=P\left[X\left(t_{1}\right) \leq x_{1}\right]$
\square Repeat for t_{2}, t_{3}, \ldots, and get CDF of $X\left(t_{2}\right), X\left(t_{3}\right), \ldots$

- $F\left(x_{1}, x_{2}\right)=P\left[X\left(t_{1}\right) \leq x_{1}\right.$ and $\left.X\left(t_{2}\right) \leq x_{2}\right]$
\square When $X\left(t_{1}, s\right)=X\left(t_{2}, s\right)$, then the r.v.'s are \qquad distributed

Stochastic processes (cont'd)

\square Sample path: the set of \qquad of the r.v.'s for particular outcomes in a stochastic process and the \qquad associated with those outcomes
\square (Em 2.46) Rolling two dices
\square To describe a stochastic process, two r.v.'s which represent an
\qquad and a \qquad of the events are required

Process type	Event counting	Time between events
Poisson(continuous)	Poisson distribution	
Bernoulli(discrete)	Binomial distribution	distribution

\square These processes are interested since they have \qquad property
$\square \boldsymbol{k}$-th interval of exponential (geometric) dist is \qquad (\qquad) dist

Renewal theory

\square A process is nth order renewal process if the \qquad is the same after every n events
\square Residual lifetime (R) (R is a r.v. representing residual lifetime of a r.v. A)

$$
\begin{aligned}
& \mathbf{r}\left(\tau-\mathbf{t}_{\mathbf{e}} \mid \mathbf{t}_{\mathbf{t}}\right) \hat{=} \mathbf{a}\left(\tau \mid \tau>\mathbf{t}_{\mathrm{c}}\right)=\frac{\mathbf{a}(\tau)}{\mathbf{P}\left[\mathbf{A}>\mathbf{t}_{\mathrm{c}}\right]}=\frac{\mathbf{a}(\tau)}{1-\int_{0}^{2} \mathbf{a}(\mathbf{s}) \mathbf{d s}} \\
& t=\tau-t_{e} \\
& r\left(t \mid t_{e}\right)=\frac{\mathbf{a}\left(t+t_{e}\right)}{1-\int_{0}^{t} a(s) d s} \\
& \overline{\mathbf{r}}=\frac{\overline{\mathbf{f}^{2}}}{\overline{\mathbf{2}}}(\boldsymbol{f} \text { is original density })
\end{aligned}
$$

Memoryless property

\square When the \qquad of a process has the same distribution as the original process
\square (Em 2.49) Show geometric distribution has memoryless property.

$$
\begin{aligned}
f_{k} & =(1-p)^{k-1} p \\
r_{k} & =\frac{f_{k+n}}{1-\sum_{m=1}^{n} f_{m}}=\frac{(1-p)^{k+n-1} p}{1-p \sum_{m=1}^{n}(1-p)^{m-1}}=\frac{(1-p)^{k+n-1} p}{1-p \sum_{m=0}^{n-1}(1-p)^{m}}=\frac{(1-p)^{k+n-1} p}{1-p \frac{1-(1-p)^{n}}{1-(1-p)}}\left(* \sum_{m=0}^{n} x^{m}=\frac{1-\boldsymbol{x}^{n+1}}{1-\boldsymbol{x}} *\right) \\
& =(1-p)^{k-1} p
\end{aligned}
$$

(r_{k} is the number of \qquad trials until success while n is the number of failures)
\square (Ex 2.21) Show exponential distribution has memoryless property.

$$
\begin{aligned}
& f(t)=\lambda e^{-\lambda t} \\
& r\left(t \mid t_{e}\right)=\frac{\lambda e^{-\lambda\left(t\left(t t_{e}\right)\right.}}{1-\int_{0}^{t_{t}} \lambda e^{-\lambda t} d t}=\frac{\lambda e^{-\lambda t} e^{-\lambda t_{e}}}{1-\left(-e^{-\lambda t}\right)_{0}^{t_{e}}}=\frac{\lambda e^{-\lambda t} e^{-\lambda t_{c}}}{e^{-\lambda t_{e}}}=\lambda e^{-\lambda t}
\end{aligned}
$$

Memoryless property (example)

\square (ex) Interarrival time is exponentially distributed with $\lambda=2$
(a) What is the prob. that a job arrives in $t=1$?
$\mathbf{P}(\boldsymbol{T} \leq 1)=\int_{0}^{1} 2 \mathrm{e}^{-2 t} \mathrm{dt}=-\left.\mathrm{e}^{-2 t}\right|_{0} ^{1}=\mathbf{1}-\mathrm{e}^{-2}$
(b) Provided that no job arrives in $t=10$, what is the prob. of a job arrival in $t=11$?

$$
\begin{aligned}
\mathbf{P}(T \leq 2 \mid 1<T) & =\frac{\mathbf{P}(1<\mathbf{T} \leq 2)}{\mathbf{P}(1<\mathbf{T})}=\frac{\int_{1}^{2} 2 \mathrm{e}^{-2 t} \mathrm{dt}}{1-\left(1-\mathrm{e}^{-2}\right)} \\
& =\frac{-\left.\mathbf{e}^{-2 t}\right|_{1} ^{2}}{\mathbf{e}^{-2}}=\frac{\mathbf{e}^{-2}-\mathrm{e}^{-4}}{\mathbf{e}^{-2}}=\mathbf{1}-\mathrm{e}^{-2}
\end{aligned}
$$

Memoryless property (example)

$\square N:$ r.v. for the no. of jobs arriving in ($0, t$)
X : r.v. for the interarrival time
If N is poisson distribution with λt, what is the distribution of X ?
(Ans) $P[X>t]=P[N=0]=\frac{\mathrm{e}^{-\lambda t}(\lambda \mathrm{t})^{0}}{0!}=\mathrm{e}^{-\lambda \mathrm{t}}$
$F(t)=P[X \leq t]=1-P[X>t]=1-\mathrm{e}^{-\lambda t}$
Poisson arrival $\equiv \ldots$ interarrival

Poisson arrival takes a random look

$\square k$ arrivals in $[0, t]$
\square Uniform distribution means an arrival in each k subintervals; prob $=\frac{h_{1}}{t} k \frac{h_{2}}{t}(k-1) \cdots \frac{h_{k}}{t} 1=\frac{k!}{t^{\prime}}{ }^{h} h_{2} \cdots{ }_{2} h_{k}$
\square An arrival in each subinterval provided k Poisson arrivals in time t

$$
\operatorname{prob}=\frac{\frac{\left(\lambda h_{1}\right)^{1} e^{-\lambda_{1}}}{1!} \cdot \frac{\left(\lambda h_{2}\right)^{1} e^{-\lambda_{k}}}{1!} \cdots \frac{\left(\lambda h_{k}\right)^{-} e^{-\lambda_{k}}}{1!}}{\frac{(\lambda t)^{k} e^{-\lambda}}{k!}}=\frac{k!}{t^{k}} h_{1} h_{2} \cdots \cdots h_{k}
$$

Poisson arrival (example)

\square (Em 2.50) At a bus stop, the interarrival time of buses is exponentially distributed with a rate of λ. If I walk up to the bus stop, how long do I have to wait?
\square (Ex 2.22) If buses arrive at intervals of $1 / 2$ hour and 1 hour alternatively, how long would you wait on the average?

Erlang distribution

$\square r$ sequential phases have independent identical distributions
$\square F(t)=1-\sum_{\mathrm{k}=0}^{\mathrm{r}-1} \frac{(\lambda \mathrm{t})^{\mathbf{k}}}{\mathrm{k}!} \mathrm{e}^{-\lambda \mathrm{t}}, t \geq 0, \lambda>0, r=1,2, \ldots$
$f(t)=\frac{\lambda^{r} t^{r-1} e^{-\lambda t}}{(r-1)!}$
\square A component has N peak stresses in $(0, t]$, which is Poisson distributed with parameter λt. For component withstanding ($r-1$) peak stresses (so r th occurrence causes \qquad),

- X : lifetime
- $[X>t]=[N<r]$
- $F(t)=1-R(t)=1-P[X>t]=1-P[N<r]=1-\sum_{k=0}^{r-1} P[N=k]=1-\sum_{k=0}^{r-1} e^{-i t} \frac{(\lambda t)^{k}}{k!}$
- Exponential is a special case of Erlang with $r=$ \qquad

Hypoexponential distribution

\square Similar to Erlang distribution, but the time in each sequential phase is independent and \qquad distributed

- 2-stage: $\mathbf{X} \sim \operatorname{HYPO}\left(\lambda_{1}, \lambda_{2}\right), \lambda_{1} \neq \lambda_{2}$

$$
f(t)=\frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}\left(\mathrm{e}^{-\lambda_{1} t}-\mathrm{e}^{-\lambda_{2} t}\right), \mathfrak{t}>\mathbf{0}
$$

$$
F(t)=1-\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{2,24 t}+\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \mathrm{e}^{-2 x+1}, t \geq 0
$$

Hyperexponential distribution

\square A process consisting of alternate phases, while experiencing one and only one of the independent ____ distributed phases

$$
\begin{aligned}
\square f(t) & =\sum_{i=1}^{k} \alpha_{i} \lambda_{i} e^{-\lambda_{t}}, \quad \mathbf{t}>0, \lambda_{i}>0, \alpha_{i}>0, \sum_{i=1}^{k} \alpha_{i}=1 \\
F(t) & =\sum_{i=1}^{k} \alpha_{i}\left(1-\mathrm{e}^{-\lambda_{t}}\right)
\end{aligned}
$$

Normal (Gaussian) distribution

\square Central limit theorem: Mean of a sample of n mutually independent r.v.'s is normally distributed in the limit $n \rightarrow \infty$
$\square f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{\frac{1}{2}\left(\frac{x}{\sigma} \frac{x}{\sigma}\right)^{2}},-\infty<\mathrm{x}<\infty, \mu$: mean$\mathrm{X} \sim N\left(\mu, \sigma^{2}\right)$(ex) errors of measurement
\square No closed form $F(x)$; use table for $Z \sim N(0,1)$ (standard normal dist)$F_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{j} e^{\frac{e^{2}}{2}} d t$
$\square F_{Z}(-z)=1-F_{Z}(z) ; F_{X}(x)=F_{Z}\left(\frac{x-\mu}{\sigma}\right)$
$\square(e x) N(200,256)$ signal is received. What is the prob that the signal is greater than 240 mV ?

$$
\text { (Ans) } \begin{aligned}
P[X>240] & =1-P[X \leq 240]=1-F_{Z}\left(\frac{240-200}{16}\right)=1-F_{Z}(2.5) \\
& =0.0062
\end{aligned}
$$

Standard normal distribution table

Table 3 Distribution Function of Standard Normal Random Variable

3	0	1	2	3	4	5	6	7	8	9
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 3517	. 5557	. 5596	. 3363	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
. 4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
. 5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7703	. 7734	. 7764	. 7974	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	.9251:	. 9265	. 9278	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9430	. 9441
1.6	. 9452	. 9463	.9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9648	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9700	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9762	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9874	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.	. 9987	. 9990	. 9993	. 9995	. 9997	. 9998	. 9998	.9999	. 9999	.0000

Note 1: If a normal variable X is not "standard," its value must be standardized: $Z=$ $(x-\mu) / \sigma$. Then $F_{X}(x)=F_{2}\left(\frac{x-\mu}{\sigma}\right)$.
Note 2: for $z \geqslant 4$, use $F_{2}(z)=1$ to four decimal places; for $z \leqslant-4, F_{2}(z)=0$ to four decimal places.
Note 3: The entries opoosite $z=3$ are for $3.0,3.1,3.2$, etc Note 4: For $2<0$ use $F_{z}(z)=1-F_{z}(-z)$.

Reorinted by permission from Introduction to Probability and Statistics, 2nd ed.. by 8. W. Lindgren and G. W. McElrath (copyright 01968 by B. W. Lindgren and G. W McEirath. Published by Macmillan Publishing CO ., Inc.)

Weibull distribution

$$
\square f(t)=\lambda o t^{(\alpha-1)} e^{-\lambda t^{a}}
$$

$\square \boldsymbol{F}(\boldsymbol{t})=\mathbf{1}-\boldsymbol{e}^{-\lambda t^{t}}$
\square Fault modeling
\square Exponential dist is a special case of Weibull dist with $\alpha=1$

