Lecture 8: Queuing Network Simulation Tool_JMT

Prof. Hee Yong Youn
College of Software
Sungkyunkwan University
Suwon, Korea
youn7147@skku.edu

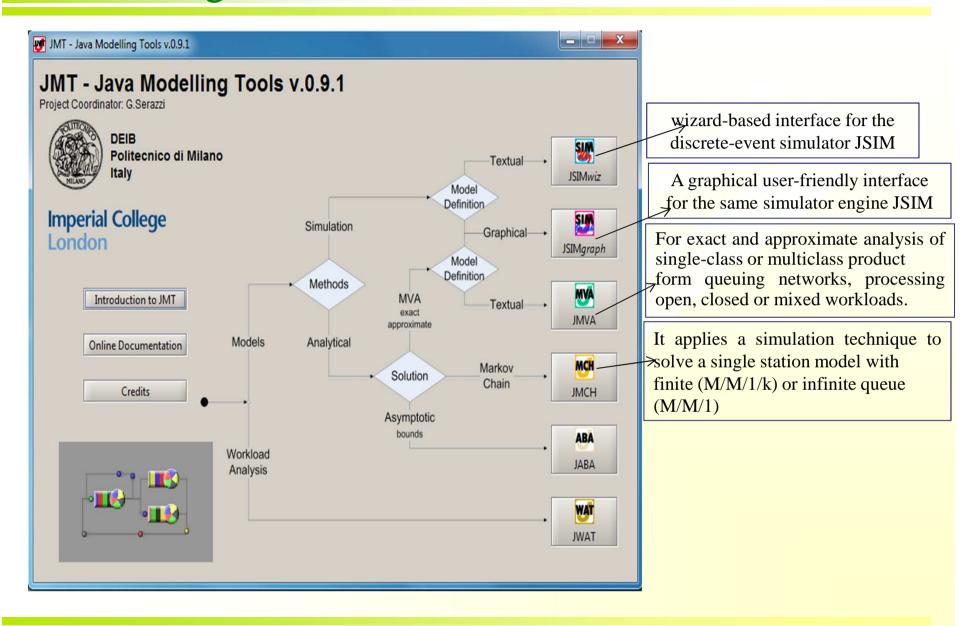
Overview

- ☐ Java Modeling Tools (JMT) is a suite of applications developed by
 - □ Politecnico di Milano (Dipartimento di Elettronica e Informazione), Italy
 - □ Released under GPL license, 2008
- ☐ The project aims at offering a complete framework for
 - □ Performance evaluation
 - □ System tuning
 - Capacity planning
 - Workload characterization study
- **■** Main features of JMT
 - MVA technique
 - Modeling a queuing network
 - ☐ Markov chain

Installation Process

	Software	Req	quiren	nents
--	----------	-----	--------	--------------

□ Download all the components of the Java Modeling Tools (JMT) from the link below.

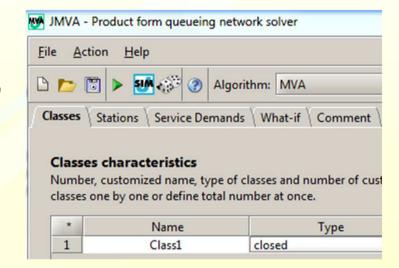

JMT tool: http://jmt.sourceforge.net/Download.html or http://sourceforge.net/projects/jmt/files/jmt/JMT-0.9.1.jar/download

□ JMT is platform-independent and requires only the Java Runtime Environment (version 1.6 or later). The Java Runtime Environment can be downloaded from the link below.

Java runtime environment: http://www.oracle.com/technetwork/java/javase/downloads/index.html

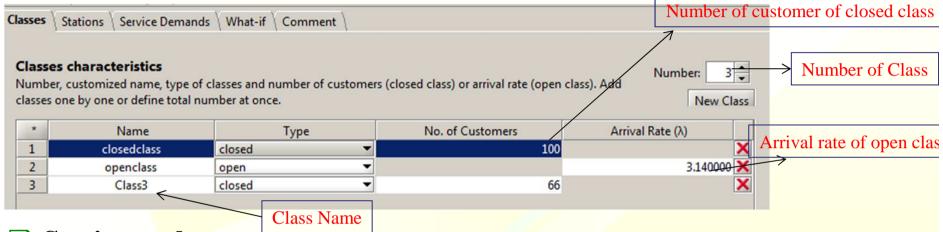
☐ Install JMT and Java Runtime Environment on the PC.

The Starting Screen of JMT Suite

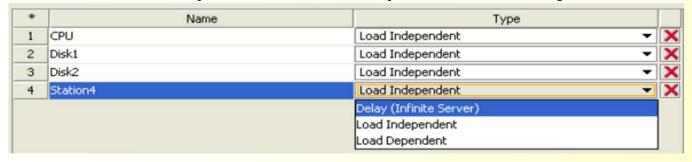


Core Algorithms - jMVA

- **☐** Mean value analysis (MVA) algorithm
 - ☐ Fast solution of product-form queueing networks
 - □ Open models: efficient solution in all cases
 - □ Closed models: efficient for models with up to 4-5 classes
- ☐ Product-form queueing networks solvable by MVA
 - □ PS/FCFS/LCFS/IS scheduling
 - □ Identical mean service time for multiclass FCFS
 - ☐ Mixed models (open + closed), load-dependent
 - ☐ Service at a queue does not depend on the state of other queues
 - □ No blocking, finite buffers, priorities

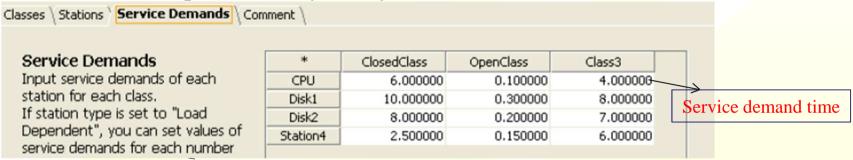

Model Definition

- □ Parameters of a model: The following parameters must be defined
 - \square Classes with their workload intensities (number of customer, N, for closed classes and arrival rate, λ , for open classes)
 - □ Stations (service centers)
 - □ Service demands (or service times and visits)
 - Optional short comment
- **□** Performance indices (for each station)
 - ☐ Stations (service centers)
 - Queue length
 - ☐ Throughput
 - □ Residence time
 - Utilization
 - □ System power (throughput/response time for *each class*)

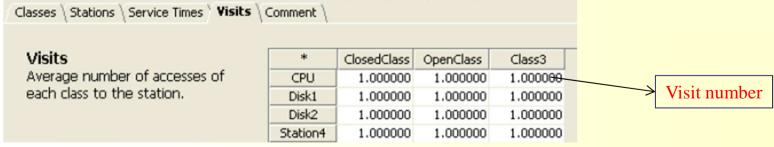


Defining a Class and Stations

□ Class example: There are three classes of customers, two closed and one open. The third class has the default name *Class3* while the other two classes have customized names, namely *ClosedClass* and *OpenClass*



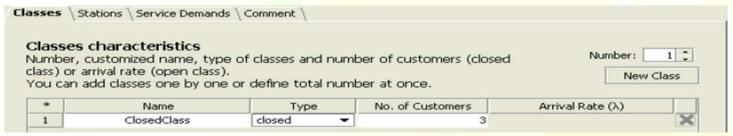
■ **Stations tab:** there is only one station with default name Station4 and there are three stations with customized names: CPU, Disk1 and Disk2. A station type can be Load Independent, Load Dependent or Delay.



Defining Service Demands Tab

Service Demands Tab: Each job of type *ClosedClass* requires an average service demand time of 6 sec to *CPU*, 10 sec to *Disk1*, 8 sec to *Disk2* and 2.5 sec to *Station4*. On the other hand, a job of type *OpenClass* requires on average 0.1s of *CPU* time, 0.3 sec of *Disk1* time, 0.2 sec of *Disk2* time and 0.15 sec of *Station4* time to be processed by the system.

■ **Visits Tabs:** there is only one station with default name Station4 and there are three stations with customized names: CPU, Disk1 and Disk2. A station type can be Load Independent. Load Dependent or Delay.

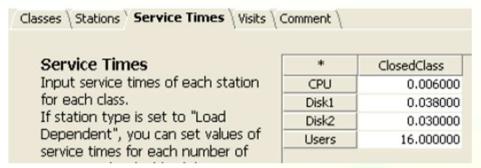


Example of JMVA Technique

A single class closed model with three load independent stations and a delay service center. Number of population in closed class, N=3. and the service time and visit for station are given below:

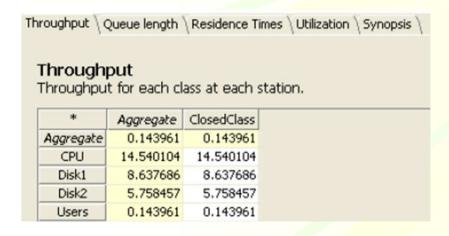
	CPU	Disk1	Disk2	Users
Service Times [s]	0.006	0.038	0.030	16.000
Visits	101.000	60.000	40.000	1.000

Step 1: Define Class



Step 2: Stations Tab

Example of JMVA Technique


Step 3: Service time.

Step 4: Visits

Result of the Model

For the single-class model, all results in the column *Aggregate* are equal to the results in the *ClosedClass* column.

JSIMgraph (Simulation - Graphical)

□ Main Features

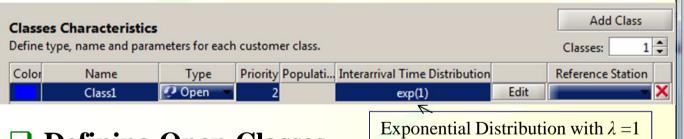
- □ **Arrival rate:** for open classes of customers generated by source stations
- □ Station service time: can be generated according to the following distributions
 - Burst (General, Modulated Markov Poisson Process MMPP2), Constant, Erlang, Exponential,
 Gamma, Hyperexponential, Normal, Pareto, Poisson, Student-T, Uniform
- Queuing discipline: supports First Come First Served, FCFS with priority, Last Come First Served, LCFS with priority
- **Routing** of the customers in the network: the path followed by the requests among the resources can be described either probabilistically or according to the following strategies:
 - Fastest service, Least utilization, Load Dependent routing, Random, Round robin, Join the Shortest Queue, Shortest response time.

□ Other features

- □ Load dependent service time strategies
- ☐ Fork-and-join stations to model parallelism
- □ Simulation of complex traffic pattern and service times (e.g., burst)
- □ Blocking regions (in which the number of customer is limited)
- □ What-if analysis (with various control parameters)

Defining A New Model

- □ To define a new model the following steps have to be performed
 - 1. Draw the network (click and drop)
 - 2. Define Customer Classes and select the Reference Station for each class
 - 3. Set the parameters for each object
 - 4. Select the performance indices to be collected and evaluated
 - 5. If needed, insert one or more *Finite Capacity Regions* (FCR)
 - 6. Choose or change the simulation parameters
 - 7. Enable What-If Analysis and set its parameters, if required
 - 8. Start the simulation
 - 9. If an error is detected, click it. Then a window will be opened which allows immediate fix.


Defining A New Model (Cont'd)

□ Home view of JSIm

☐ Defining Open Classes

After adding a class and set its name and priority, the type of the class needs to be selected. Go to define tab and select custom

☐ Defining Open Classes

- The population size (also referred to as N) is the parameter that characterizes a closed class.
- □ A Reference Station for the class *must* be selected from the Reference Station menu

13

Exponen

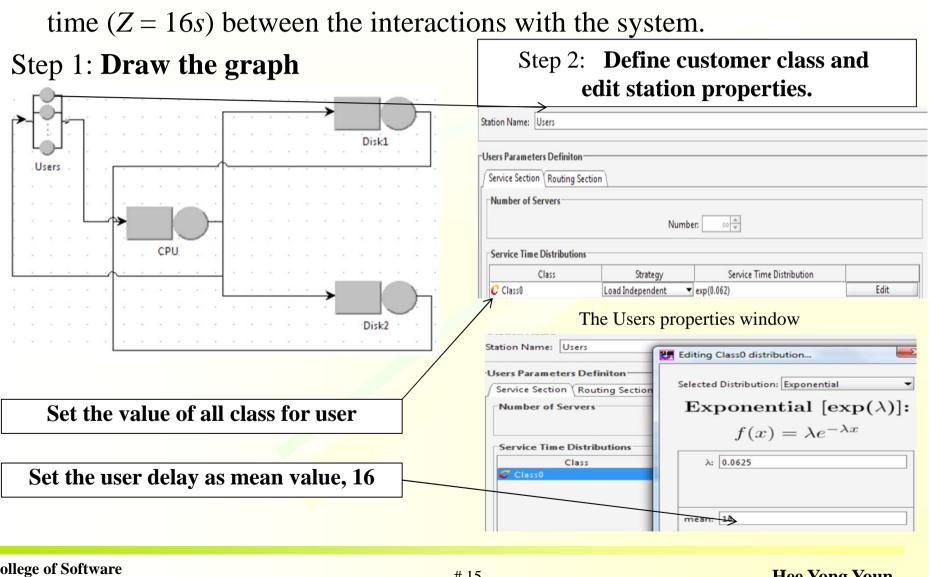
mean: 1

Hyperexponential

Replayer

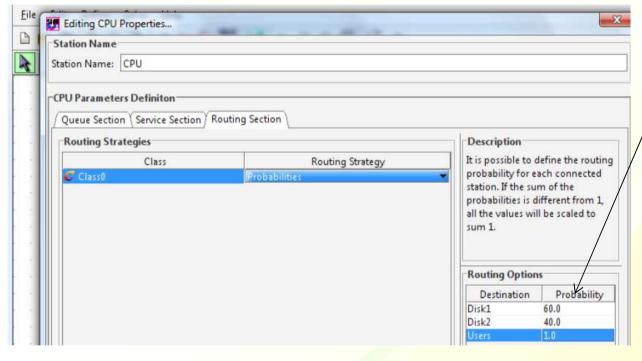
OK Cancel

Interval time distribution


Editing

Performance Indices

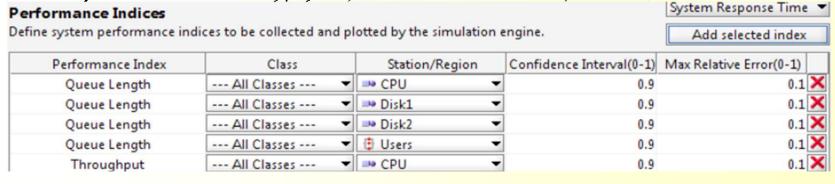
- **□** Number of Customers (of a station)
- **□ Queue Time (of a station)**
- **□** Residence Time
- **□** Response Time (of a station)
- **□** Response Time per Sink
- ☐ Utilization (of a station)
- ☐ Throughput (of a station)
- ☐ Throughput per Sink
- **☐** System Throughput [X] (of the entire system)
- **☐** System Response Time [R](of the entire system)
- **□** System Number of Customers (of the entire system)
- **☐** System Power (at system and per-class levels):


Example:

☐ The previous example: The users delay station represents user's think time (Z = 16s) between the interactions with the system.

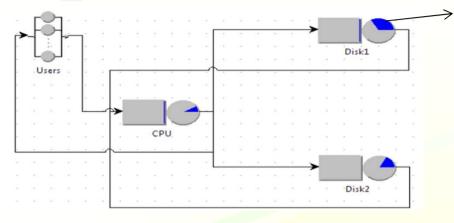
Routing Section

As there are 3 outgoing links from *CPU*, each job's probability to choose one of the paths needs to be set. This is done by setting the probabilities of *Disk1*, *Disk2* and *Users* as 60, 40 and 1 respectively.

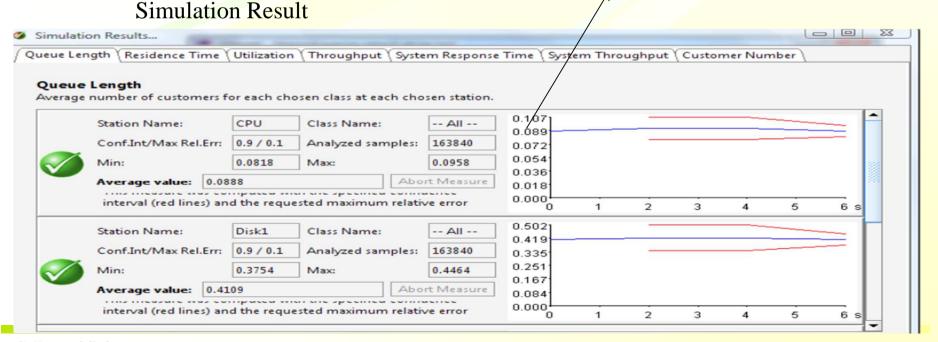


Setting the probabilities (or the visits) for the output of the *CPU* station

☐ Need to set the routing strategy for all stations.


Define the Performance Indices

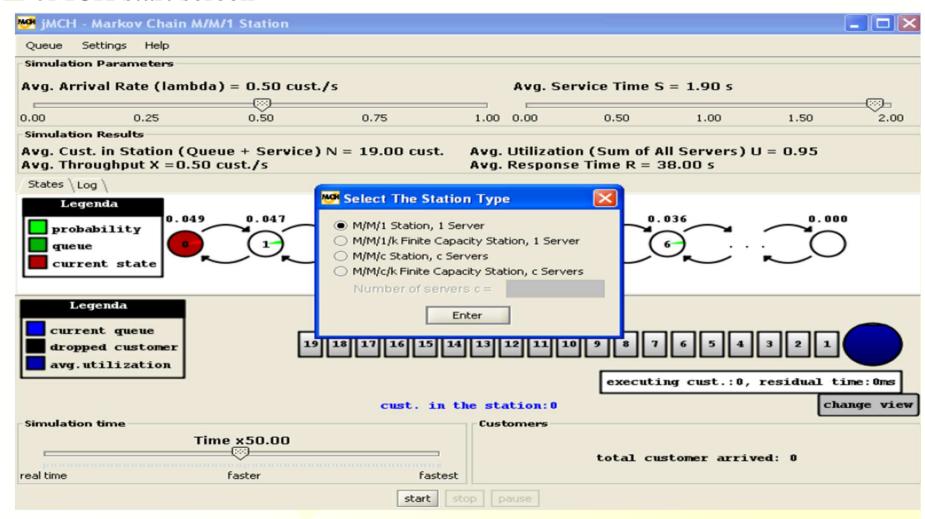
- ☐ In Example 1 the following indices are studied
 - □ Queue length [jobs] (for CPU, Disk1, Disk2, Users and the global System)
 - □ *Throughput [jobs/sec]* (for CPU, Disk1, Disk2, Users and the System)
 - □ Residence time [sec] (for CPU, Disk1, Disk2, Users and the System)
 - □ *Utilization* (for CPU, Disk1, Disk2 and Users).
- ☐ The following operations are required
 - □ Select Queue Length: Click on 'Add selected index' for four times. Change State/Region of these Indices to *CPU*, *Disk1*, *Disk2* and *Users*.
 - □ Repeat for *Throughput*, *Residence time*, *Utilization*.


Run the Simulation

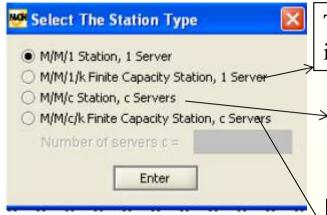
Press > from the toolbar:

Color define the layout of the model with the percentage of utilization and queue length

Average number of customer each second



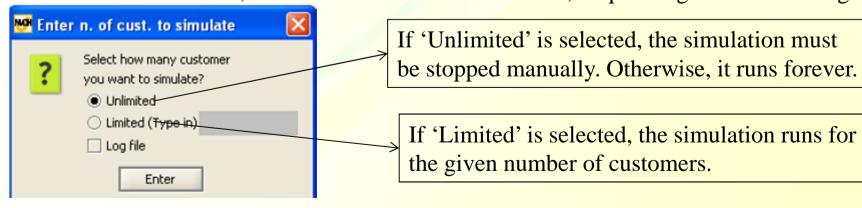
JMCH (Markov Chain)


- ☐ JMCH provides a graphical representation of the states of the Markov Chain corresponding to a single station model
- ☐ The type of station can be modified later by using the menu item 'Queue -Change station type'
 - \square *M/M/*1: 1 server and infinite queue size
 - \square M/M/1/k: 1 server and finite queue size, k
 - \square M/M/c: c servers (homogeneous) and infinite queue size
 - \square M/M/c/k: c servers (homogeneous) and finite queue size, k
- It is possible to change the arrival rate λ and service time S of the station at simulation run time
- \square If the model is of limited capacity, the size, k, of the queue can also be changed dynamically

Start the JMCH Solver

■ JMCH start screen

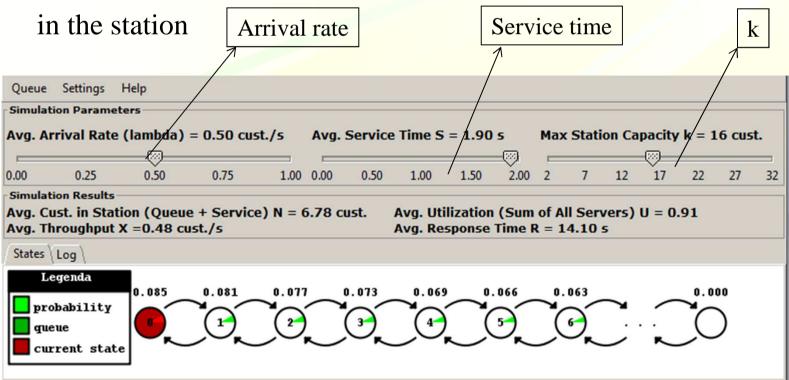
Select a Station Type and Simulate



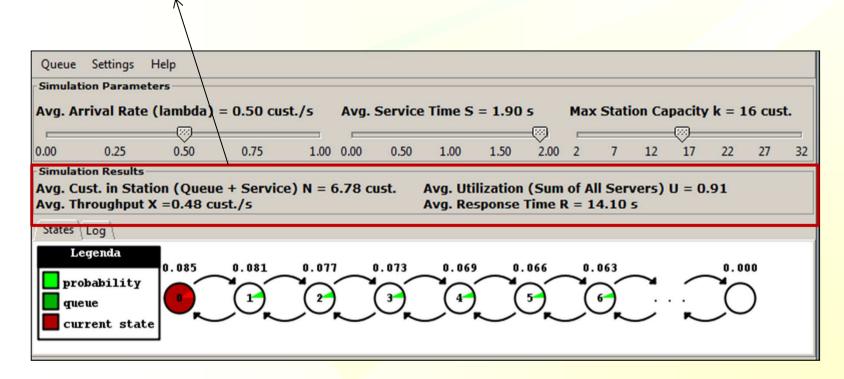
The queue size k can be set dynamically while the simulation is running. The minimum value of k is 2.

The number c of the servers should be set with this dialog box, and it cannot be changed dynamically while the simulation is running.

The number c of the servers should be set with this dialog box, and it cannot be changed dynamically while the simulation is running. The queue size k can be set dynamically while the simulation is running.


☐ To start the simulation, user needs to 'Press Start' button, on pressing 'Start the dialog'

Input Parameters


- \square λ : Average arrival rate, the distribution of inter arrival times is exponential with mean $1/\lambda$
- □ S: Average service time for each customer, the values are exponentially distributed

 \square k: Maximum station size: the maximum number of customers allowed

Performance Indicies

- 1. Mean number of customers in the station
- 2. Throughput
- 3. Utilization
- 4. Mean response time
- 5. Probability of the states of the Markov Chain

Conclusion

- **☐** Analysis with Java Modelling Tools (http://jmt.sf.net)
 - Queueing network simulation
 - □ Bottleneck identification
 - Workload analysis
 - Mean value analysis
- Manual can be found on online from the link below
 - □ http://jmt.sourceforge.net/JSIMg.html