Chapter 3: Process Concept

Operating System Concepts — 9th Edition Silberschatz, Galvin and Gagne ©2013

"%«

__\ «m

*»" Chapter 3: Process Concept

Process Concept

Process Scheduling

Operations on Processes

Interprocess Communication

Examples of IPC Systems
Communication in Client-Server Systems

Operating System Concepts — 9t Edition 3.2 Silberschatz, Galvin and Gagne ©2013

St Objectives

To introduce the notion of a process -- a program in execution, which forms the basis of all
computation

To describe the various features of processes, including scheduling, creation and termination,
and communication

To explore interprocess communication using shared memory and message passing

To describe communication in client-server systems

——M
A ﬁ.\y A

Operating System Concepts — 9t Edition 3.3 Silberschatz, Galvin and Gagne ©2013

-

,\
D),

557 Process Concept

An operating system executes a variety of programs:

Batch system — jobs*(OS proc executes code, while user ones do code)
Time-shared systems — user programs or tasks

Textbook uses the terms job and process almost interchangeably
Process — a program in execution; process execution must progress in sequential fashion
Multiple parts

The program code, also called text section

Current activity including program counter, processor registers

Stack containing temporary data

» Function parameters, return addresses, local variables

Data section containing global variables

Heap containing memory dynamically allocated during run time
Program is passive entity stored on disk (executable file), process is active

Program becomes process when executable file loaded into memory
Execution of program started via GUI mouse clicks, command line entry of its name, etc
One program can be several processes

Consider multiple users executing the same program

\\
\\\
\
L \

> ?’ T'Z;;Li\}\‘“)
AU DA

Operating System Concepts — 9th Edition 34 Silberschatz, Galvin and Gagne ©2013

A?)'/ P ro cess i n M e m 0 ry* (virtual addr space)

* (Ox7ft...f; after this to Oxff...f is taken by)
max

stack
(1)

l

() ()
ONORONO "
ORO .

heap
(Heap: specialized _ where if B is a child
node of A, then key(AY key(B); an element
with the greatest key is always in the i data
node (___ -heap); crucial in priority queue
and graph algorithm)

text

/ <
/ »

Operating System Concepts — 9t Edition 3.5 Silberschatz, Galvin and Gagne ©2013

S Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready. The process is waiting to be assigned to a processor
terminated: The process has finished execution

Operating System Concepts — 9t Edition 3.6 Silberschatz, Galvin and Gagne ©2013

«ml

‘w" Diagram of Process State

admitted interrupt

scheduler dispatch

I/0O or event completion I/0O or event wait

Operating System Concepts — 9t Edition 3.7 Silberschatz, Galvin and Gagne ©2013

3‘(

=

. g_my.,l

5 Process Control Block (PCB)

Information associated with each process proceSS St ate
(also called task control block)
Process state — running, waiting, etc process num ber

Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers*(scheduling parameter)

program counter

Memory-management information — memory allocated to reg ISte rs
the process*(base & limit reg, page table, segment table)
Accounting information — CPU used, clock time elapsed .
since start, time limits memory limits
/O status information — I/O devices allocated to process, list . .
of open files list of open files
®e o o
Operating System Concepts — 9th Edition 3.8 Silberschatz, Galvin and Gagne ©2013

P _ :
~$*7 CPU Switch From Process to Process

(switch)

process P, operating system process P,

interrupt or system call

executing l / (put the data in the mem space allocated to)
¥ ~
T save state into PCB, | *
. - idle
reload state from PCB, 1
>idle interrupt or system call executing
! \ ! -
save state into PCB;
. > idle
) reload state from PCB, y
executing | _\
A4

Operating System Concepts — 9t Edition 3.9 Silberschatz, Galvin and Gagne ©2013

gy Threads

So far, process has a single thread of execution
Consider having multiple program counters per process
Multiple locations can execute at once
» Multiple threads of control -> threads
Must then have storage for thread details, multiple program counters in PCB
See next chapter

Operating System Concepts — 9t Edition 3.10 Silberschatz, Galvin and Gagne ©2013

(=

o -
“$%7 Process Representation in Linux

&

Represented by the C structure t ask st r uct*(found in <linux/sched.h>)

pidt pid; /* process identifier */

|l ong state; /* state of the process */

unsigned int tine slice /* scheduling information */

struct task struct *parent; /* this process’s parent */

struct list head children; /* this process’s children */ *(also sibling)
struct files struct *files; /* list of open files */

struct mmstruct *mm /* address space of this process */

siruct task_struct siruct task_struct struct tasi(_struct
process information process information s o 8 process informason

current *(pointer of kernel)
(currently executing proccess)

*(ex) current -> state = new_state)

Operating System Concepts — 9t Edition 3.11 Silberschatz, Galvin and Gagne ©2013

S St Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for time sharing
Process scheduler selects among available processes for next execution on CPU
Maintains scheduling queues of processes

Job queue — set of all processes in the system

Ready queue — set of all processes residing in main memory, ready and waiting to
execute *(linked list)

Device queues — set of processes waiting for an I/O device
Processes migrate among the various queues

Operating System Concepts — 9t Edition 3.12 Silberschatz, Galvin and Gagne ©2013

P Ready Queue And Various
[I/O Device Queues

%

queue header PCB, PCB,
* ready head > > —=
(CPU) queue tail registers registers
L] L]

— x mad head +———=

tape : -

unit 0 tail 7=

mag head —+——=

tape i i PCB, PCB,,4 PCBs;

unit 1 tal

disk head “
unit O tail

-
—_— —_— S
(Device /
gueue)

PCB.

terminal head T—> =
unit O tail L

Operating System Concepts — 9t Edition 3.13

|

~“$»’ Representation of Process Scheduling

Queuing diagram represents queues, resources, flows

| ready queue CPU >
/O queue «— |/O request 1=—
time slice :
expired
child fork a
@‘7 child)
interrupt wait for an
OCCUrs interrupt

Operating System Concepts — 9t Edition 3.14 Silberschatz, Galvin and Gagne ©2013

wm,&

T Schedulers

|

Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue
Short-term scheduler (or CPU scheduler) — selects which process should be executed next and
allocates CPU
Sometimes the only scheduler in a system
* ﬁlOO)

Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)

Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
* (Nonexistent in Unix and Windows since they are system; new proc is putin for stearts scheduler)

The long-term scheduler controls the degree of multiprogramming™(of proc)

Processes can be described as either:
I/0-bound process — spends more time doing I/O than computations, many short CPU

bursts
CPU-bound process — spends more time doing computations; few very long CPU bursts
Long-term scheduler strives for good process mix* (for maximizing both 1/0O and CPU)

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 3.15

|

5%/ Addition of Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple programming needs to decrease

Remove process from memory, store on disk, bring back in from disk to continue execution:

swapping *(-term scheduler)
swap in partially executed swap out
swapped-out processes
* (-term scheduler)
<l \
» ready queue CPU » end
*(- term scheduler) —
I/O waiting

Operating System Concepts — 9t Edition

queues

3.16

Silberschatz, Galvin and Gagne ©2013

~“$%7 Multitasking in Mobile Systems

Some systems/ early systems allow only one process to run, others suspended *(before iOS __)

Due to screen real estate, user interface limits iOS provides for a

Single foreground process- controlled via user interface™(appearing on the

)

Multiple background processes— in memory, running, but not on the display, and with Iimiték(due to

x((ex
Limits include single, s(lgorz
audio playback

Android runs foreground and back

completing downlgad from a net
task,precel%ing notification of eve)nts, specific long-running tasks IfK&'€M US€)
* ((ex) new email msg)

round, with fewer limits
*%(ex Séparate app companent)

Background process uses a service to perform tasks' ((€X) streaming audio)

Service can keep running even if background process is suspended

Service has no user interface, small memory use

* (big.LITTLE heterogeneous computing arch, @811, Cortex-A7)

A57 High Cluster (High in Perf, Power) of 4 Cores

Linux Scheduler

picks any One Cluster
at a time,

But, no combinations

High Cluster is picked
if at-least one High
Core is needed,

else Low Cluster

Operating System Concepts — 9" Edition

Cortex
-A57

Cortex
-A57

Cortex
-A57

Cortex
-A57

AS53 Low Cl

uster (Low in

Per

f, Power) of 4 Cores

Cortex
-A53

Cortex
-A53

Cortex
-A53

Cortex
-A53

3.17

Silberschatz, Galvin and Gagne ©2013

life

ve

<57 Context Switch

When CPU switches to another process, the system must save the state of the old process and load
the saved state for the new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while switching
The more complex the OS and the PCB -> longer the context switch
(mem speed, no of ___ to be copied, existencpetfial such as load/store all reg)
Time dependent on hardware support *

Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once
* ((ex) UltraSPARC)

Operating System Concepts — 9t Edition 3.18 Silberschatz, Galvin and Gagne ©2013

o Operations on Processes

System must provide mechanisms for process creation, termination, and so on as detailed next

Operating System Concepts — 9t Edition 3.19 Silberschatz, Galvin and Gagne ©2013

P .
T Process Creation

Parent process create children processes, which, in turn create other processes, forming a tree of
processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing options
Parent and children share all resources
Children share subset of parent’ s resources” (f0 preventsystem)

Parent and child share no resources

Execution options
Parent and children execute concurrently™® (Unix)
Parent waits until children terminate

Operating System Concepts — 9t Edition 3.20 Silberschatz, Galvin and Gagne ©2013

g/ﬁ«mﬁ/ * (task) B} _
CRES TN
b A Tree of Processes in Linux
S s
*(root parent of all)
.i ni t
Pra =1 (daemon: background performing
single fairly simple task)
* X
thread) secureshell__)
I ogin kt hr eadd sshd
pid = 8415 pid =2 pid = 3028
(Bourne- shell) (Call user space age cache)
bash * khel per % pdf | ush sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
(____ proc) x (text editor with)
emacs tcsch
pid = 9204 pid = 4005

Operating System Concepts — 9t Edition 3.21 Silberschatz, Galvin and Gagne ©2013

G5 Process Creation (Cont.)

Address space
Child duplicate of parent®(Unix)
Child has a program loaded into it* (DEC VMS, NT)

UNIX examples

f or k() system call creates new process™ (pid of child is returned to after fork)
exec() system call used after a f or k() to replace the process’ memory space with a new program
*(copyon)
parent ; resumes
walit S

Operating System Concepts — 9t Edition 3.22 Silberschatz, Galvin and Gagne ©2013

”A{;y{ C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

b

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

} * (execvell|le|v|vp)

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0O;

{ W
Operating System Concepts — 9t Edition 3.23 Silberschatz, Galvin and Gagne ©2013

’ ¥ Creating a Separate Process via Windows API

Operating System Concepts — 9t Edition

#include <stdio.h>
#include <windows.h>

int main(VDID)

{

STARTUPINFO si;
PROCESS_INFOURMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /#* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))

fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

3.24

Silberschatz, Galvin and Gagne ©2013

,\
D),

g7 Process Termination

Process executes last statement and asks the operating system to delete it (exi t ())
Output data from child to parent (viawai t ())

Process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort ())
Child has exceeded allocated resources
Task assigned to child is no longer required
If parent is exiting
» Some operating systems do not allow child to continue if its parent terminates
All children terminated - cascading termination

Wait for termination, returning the pid:*(in proc)
pidt pid; int status;
pid = wait(&status);
If no parent waiting, then terminated process is a zombie
If parent terminated, processes are orphans (in Unix, proc becomes new parent)

\\
\\\
\
L \

> - 2 T'Z;:f\}\‘“)

,./‘V
‘4 W <

7/ /) B\ %
A 29X

Operating System Concepts — 9th Edition 3.25 Silberschatz, Galvin and Gagne ©2013

ey
‘?r(:"”{” " - 1
=27/ Multiprocess Architecture — Chrome Browser

&\

Many web browsers ran as single process (some still do)

If one web site causes trouble, entire browser can hang or crash _
*é 2008; freeware; component of Chrome OS; % & % share of desktop & all platforms, respectiyely
Google Chrome Browser is multiprocess with 3 categories

Browser process manages user interface, disk and network I/0*(only ____ browser proc)

Renderer process renders web pages, deals with HTML, Javascript, new one for each website
opened

» Runs in sandbox restricting disk and network 1/0, minimizing effect of security exploits
] * (a virtual container in which prog carsakely run; virtualization) *
Plug-in process for each type of plug-in (mechanism for separating running programs)

* (such as Flash or QuickTime)

m™ 7
L] & @Uﬂley::ﬂpﬁratlng System Cor ¢ @X BBC - Homepage - E The MNew York Times - Breal {-‘ Google Chrome - The web

€« > C O www.google.c&{l:rome.-‘inl:lfenfma.*fdownload—mac.l1tm|?brand=$l(2 /’ bkl ¥

l‘\:? ChrDrﬂe md Features / | English)

: Each tab represents a separate process

Operating System Concepts — 9t Edition 3.26 Silberschatz, Galvin and Gagne ©2013

o Interprocess Communication

o= s

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, including sharing data
Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience
Cooperating processes need interprocess communication (IPC)
Two models of IPC

Shared memory

Message passing

=N \‘w
SVt N
U A;‘

Y

Operating System Concepts — 9t Edition 3.27 Silberschatz, Galvin and Gagne ©2013

' a.m».k :
(ot i i
el Communications Models
* (Msg passing) * (Shared mem)
process A process A
— shared memor —
(read mg process B y
-y process B
(usefulwith no of data to
be exchanged; easy to i «
using system calls; connection (max. : convenient comm.;
must be made _comm) no___ involvement;
and sync problem)
message queue
—> Mg (M4 (Mo Mg| ... (M|
(write_ msg kernel
kernel system call

* (a) (b)
((ex) IBM WebSphere MQ,
Java Msg Service)

J = -~
w Al L
= :
o AN
a

Operating System Concepts — 9t Edition 3.28 Silberschatz, Galvin and Gagne ©201

s Cooperating Processes

Independent process cannot affect or be affected by the execution of another process
Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

Operating System Concepts — 9t Edition 3.29 Silberschatz, Galvin and Gagne ©2013

=™

,\«ml

A»" Producer-Consumer Problem

Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

unbounded-buffer places no practical limit on the size of the buffer® (producer does not)

bounded-buffer assumes that there is a fixed buffer size * (Producer waits if buffer ___)

* (Two approaches for buffer implementation:
1) OS using
i) coded by programmer using)

Operating System Concepts — 9t Edition 3.30 Silberschatz, Galvin and Gagne ©2013

o
e »”” Bounded-Buffer — Shared-Memory Solution

Shared data

#defi ne BUFFER SI ZE 10
t ypedef struct {

} item

| tem buf f er [BUFFER_SI ZE] ;
I Nt 1 n = O; *(n: position to put ___data)

| nt out = 0O:; *(out: position of data to get out)

Solution is correct, but can only use BUFFER_SIZE-1 elements

Operating System Concepts — 9t Edition 3.31 Silberschatz, Galvin and Gagne ©2013

g Bounded-Buffer — Producer

| t em next produced,
while (true) {
/[* produce an itemin next produced */
while (((in + 1) %BUFFER SI ZE) == out)
, /* do nothing */
buffer[in] = next produced,
in =(in + 1) % BUFFER SI ZE;

}

* (Assume in=9, out=0 (means 9 items have been puifter[0],...,[8]). Then, while loop becomes
So, only 9 entries out of 10 entries are usable.)

}_ ,‘
w Al L=
= :
o AN
a

Operating System Concepts — 9t Edition 3.32 Silberschatz, Galvin and Gagne ©201

“$%7 Bounded Buffer — Consumer

| tem next consuned;

while (true) {
while (i n == out)

, /* do nothing */
next consuned = buffer[out];

out = (out + 1) % BUFFER SI ZE;

[* consune the itemin next consuned */

Operating System Concepts — 9t Edition 3.33 Silberschatz, Galvin and Gagne ©2013

r;‘g

(£ B

fm-&
2 " Interprocess Communication — Message Passing

Mechanism for processes to communicate and to synchronize their actions
Message system — processes communicate with each other without resorting to shared variables
IPC facility provides two operations:

send(message) — message size fixed or variable
recei ve(message)*(Fixed msg size: easy implementation but difficult)

If P and Q wish to communicate, they need to:
establish a communication link between them
exchange messages via send/receive

Implementation of communication link
physical (e.g., shared memory, hardware bus)
logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit buffering)

Operating System Concepts — 9t Edition 3.34 Silberschatz, Galvin and Gagne ©2013

=

o Implementation Questions

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of communicating processes?
What is the capacity of a link?*(buffer space?)

Is the size of a message that the link can accommodate fixed or variable?

s a link unidirectional or bi-directional? *(proc can only send or receive?)

*(Other Issues: direct/indirect comm; symm/asymmaming(sender
names receiver, but not receiver in asymm); autiaeaplicit buffering;
send by copy/reference; fixed/variable size msg)

=N \‘”\
Ny
AU N

Y

Operating System Concepts — 9t Edition 3.35 Silberschatz, Galvin and Gagne ©2013

=7 Direct Communication

Processes must name each other explicitly:
send (P, message) — send a message to process P
recei ve(Q, message) — receive a message from process Q

Properties of communication link
Links are established automatically
A link is associated with exactly one pair of communicating processes
Between each pair there exists exactly one link
The link may be unidirectional, but is usually bi-directional

*(Disadv: limited since change of a prame needs examining all other proc definitions)

Operating System Concepts — 9t Edition 3.36 Silberschatz, Galvin and Gagne ©2013

o Indirect Communication

|

Messages are directed and received from mailboxes (also referred to as ports)
Each mailbox has a unique id
Processes can communicate only if they share a mailbox

Properties of communication link *(mailbox)
Link established only if processes share a common mailbox*(owned by a by declaring it or OS)
A link may be associated with many processes>|< (when they share a common)
Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

(G IS required when the owner abmais)

A AN
Operating System Concepts — 9t Edition 3.37 Silberschatz, Galvin and Gagne ©2013

P Indirect Communication

Operations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:
send(A, message) — send a message to mailbox A
recei ve(A, message) — receive a message from mailbox A

Operating System Concepts — 9t Edition 3.38 Silberschatz, Galvin and Gagne ©2013

o e Indirect Communication

Mailbox sharing
P,, P,, and P; share mailbox A
P,, sends; P, and P, receive
Who gets the message?

Solutions
Allow a link to be associated with at most two processes
Allow only one process at a time to execute a receive operation
Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Operating System Concepts — 9t Edition 3.39 Silberschatz, Galvin and Gagne ©2013

) R
S5 L Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous*(needs between the sender & receiver)

Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous

Non-blocking send has the sender send the message and continue
Non-blocking receive has the receiver receive a valid message or null

Operating System Concepts — 9t Edition 3.40

Silberschatz, Galvin and Gagne ©2013

=

| e
~5r7 Synchronization (Cont.)

Different combinations possible
If both send and receive are blocking, we have a rendezvous

Producer-consumer becomes trivial

nmessage next produced,;

while (true) {
/* produce an itemin next produced */

send(next produced);

}

nmessage next consuned;

while (true) {
recei ve(next consuned);

[* consune the itemin next consuned */

s .~
w ER4
Yo\ -
o .

Operating System Concepts — 9t Edition 3.41 Silberschatz, Galvin and Gagne ©201

=

=N \‘w
SVt N
AU X

5 -
> Buffering
S s
Queue of messages attached to the link; implemented in one of three ways
1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)
2. Bounded capacity — finite length of n messages
Sender must wait if link full
3. Unbounded capacity — infinite length
Sender never waits
* (For Async comm: P> Q
P: send (Q, msg) Q: receive (P, msg)
receive(Q, msg) send(P, msg) or reply(P, Ack);
Here send() is while reply() is nonbexkomm)
*(RPC IS similar to comm:
Msg = subroutine call
Return msg = result of subroutine call)
Operating System Concepts — 9t Edition 3.42 Silberschatz, Galvin and Gagne ©2013

Y

=

“$%7 Examples of IPC Systems - POSIX

&»\)

n POSIX Shared Memory

| Process first creates shared memory segment
shmfd = shm open(nane, O CREAT | O RDRW 0666);

| Also used to open an existing segment to share it
| Set the size of the object
ftruncate(shmfd, 4096);

| Now the process could write to the shared memory
sprintf(shared nenory, "Witing to shared nenory");

/» N]

Operating System Concepts — 9t Edition 3.43 Silberschatz, Galvin and Gagne ©2013

- «ml

S5 IPC POSIX Producer

#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

/* the size (in bytes) of shared memory object */
const int SIZE 4096;
/* name of the shared memory object */

const char *name = "[(S";

/* strings written to shared memory */
const char *message 0 = "Hello";

const char *message 1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O CREAT | O_RDRW, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr, "%s" ,message 1);

ptr += strlen(message 1);

return 0;

}
Operating System Concepts — 9t Edition 3.44 Silberschatz, Galvin and Gagne ©2013

o e IPC POSIX Consumer

#include <stdio.h>
#include <stlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;

/* name of the shared memory cbject */

const char *name = "0S";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, 0 RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

Operating System Concepts — 9t Edition 3.45 Silberschatz, Galvin and Gagne ©2013

=

P
%%’ Examples of IPC Systems - Mach

|

Mach communication is message based
Even system calls are messages
Each task gets two mailboxes at creation- Kernel and Notify
Only three system calls needed for message transfer
nsg_send(), nsg_receive(), nmsg_rpc()
>|I\</I(%i(ljt38xes needed for commuication, created via
port "al | ocat e()
Send and receive are flexible, for example four options if mailbox full:
» Wait indefinitely
» Wait at most n milliseconds
» Return immediately

» Temporarily cache a message

X
(sends notification of event occurrencebeo port)

Operating System Concepts — 9t Edition 3.46 Silberschatz, Galvin and Gagne ©2013

N
=

.
7 Examples of IPC Systems — Windows

& s

Message-passing centric via advanced local procedure call (LPC) facility
Only works between processes on the same system
Uses ports (like mailboxes) to establish and maintain communication channels
Communication works as follows:
» The client opens a handle to the subsystem’ s connection port object.
» The client sends a connection request.

» The server creates two private communication ports and returns the handle to one of them
to the client.

» The client and server use the corresponding port handle to send messages or callbacks and
to listen for replies.

(Callback is a reference to an codasgoiaas an to other code.
— " _ . : -
s Brnrmaiient srwar | lib func to call a subroutitefined in a level layer.)
request | Connection Handle icati
™ T part » Application program
Main program Callback function
Handle Client calls calls

A

Communication Port

1 4

Server Handle
Communication Port

Library function

Y

Software library

Shared (With caliback, the can De tiexipie, Spramd
= » Section Object 3 - . R
(< = 256 bytes) can be called by app for different use & }\ _
I W

Operating System Concepts — 9t Edition 3.47 Silberschatz, Galvin and Gagne ©2013

P e
~$*7 Local Procedure Calls in Windows XP

Client

Server

Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle

Communication Port

Operating System Concepts — 9t Edition

g

Shared
Section Object
(< = 256 bytes)

e

3.48

Silberschatz, Galvin and Gagne ©2013

“%”/ Communications in Client-Server Systems

Sockets

Remote Procedure Calls

Pipes

Remote Method Invocation (Java)

Operating System Concepts — 9t Edition 3.49 Silberschatz, Galvin and Gagne ©2013

G Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port — a number included at start of message packet to
differentiate network services on a host

The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
Communication consists between a pair of sockets
All ports below 1024 are well known, used for standard services

* (telnet port: __, ftp: __, web(http): _)

Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

A B3
Operating System Concepts — 9t Edition 3.50 Silberschatz, Galvin and Gagne ©2013

=

7 Socket Communication
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

N \\
/] \<)‘
U X 2\

Operating System Concepts — 9t Edition 3.51 Silberschatz, Galvin and Gagne ©2013

s et Sockets in Java

Three types of sockets
Connection-oriented (TCP)
Connectionless (UDP)

Mul ti cast Socket class— data can
be sent to multiple recipients

Consider this “Date” server:

Operating System Concepts — 9t Edition

import java.net.x*;
import java.io.*;

public class DateServer

{

public static void main(String[] args) {

try {
ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}
}
catch (IOException ioce) {
System.err.println(ioce);
}

}
} - .‘~\ \

A DAY

3.52 Silberschatz, Galvin and Gagne ©2013

,\
D),

> o Remote Procedure Calls

* (sync. comm with msg as and return msg as __ of subr)
Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

Again uses ports for service differentiation
Stubs — client-side proxy for the actual procedure on the server*(a separate stub for each separate pragedur
The client-side stub locates the server and marshalls the parameters

The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

On Windows, stub code compile from specification written in Microsoft Interface Definition Language

MIDL : :

() *(machine representation)

Data representation handled via External Data Representation (XDR) format to account for different
architectures * (sender converts data into before transtrerdreceiver converts it to original data)

Big-endian and little-endian
Remote communication has more failure scenarios than local™ (duplicated/failed msg problem (sol) _ /ACK
Messages can be delivered exactly once rather than at most once

OS typically provides a rendezvous (or matchmaker) service to connect client and server

*(___ (how does client knows the port no.?)
(sol) 1. fix no. at time 2.)

\\
\\\
\
L \

> - 2 T'Z;;Li\}\‘“)
A K

Operating System Concepts — 9th Edition 3.53 Silberschatz, Galvin and Gagne ©2013

/,,m.k i
S St Execution of RPC

&\
client messages server
P (Remote Method Invocation (RMI) is a Java mecharssmlarto)
user calls Kkerne . .
to send RPC * (RPC para are ordinary data structure, while RMispa as para)
message to .
proc_edﬂre X * (RMI allows user to develop Java distributexass a net)
* (If_ mar_shalle(_j para are local object, they are pad$y using object serialization
(java.io. zable). If remote, passed by)
kernel sends F_Ir_g:rr;ecrl\i(zr:t matchmaker
message to Port: matchmaker | receives

matchmakerto Boradiecs " message, looks
find port number foF BRC X up answer
L
From: server
kernel places To: client matchmaker
% P

port Pin user = ort: kernel replies to client
RPC message Re: RFC X with port P
Port: P

m daemon
kernel sends To: server listening to
RPC Port: port P port P receives

<contents> message

i v

. From: RPC daemon
kernel receives Port: P processes
reply, passes % request and

f To: client
it to user Port: kernel processes send
output

<output>

¥

\;. < < i ‘;‘\)
A ﬁ.\y A

Operating System Concepts — 9t Edition 3.54 Silberschatz, Galvin and Gagne ©2013

=

S Pipes

|

Acts as a conduit allowing two processes to communicate

Issues
Is communication unidirectional or bidirectional?
In the case of two-way communication, is it half or full-duplex?
Must there exist a relationship (i.e. parent-child) between the communicating processes?
Can the pipes be used over a network? *(or need to reside on the same machine?)

Operating System Concepts — 9t Edition 3.55 Silberschatz, Galvin and Gagne ©2013

35 Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style
Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes >|<(if they terminate, ordinary pipe ceases to

* parent « child
(read-end)fd(0) fd(1) (write-end) fd(0) fd(1)

| |
SO =

Windows calls these anonymous pipes

See Unix and Windows code samples in textbook
* (Unix treats a pipe as a special type of)

- w
oY V)
'n».fv(/
7 ‘V\‘D

AU n*ﬂ.

Operating System Concepts — 9t Edition 3.56 Silberschatz, Galvin and Gagne ©2013

(! .
S Named Pipes

Named Pipes are more powerful than ordinary pipes
Communication is bidirectional
No parent-child relationship is necessary between the communicating processes
* (even though they terminate, named pipe)

Several processes can use the named pipe for communication

Provided on both UNIX and Windows systems

Operating System Concepts — 9t Edition 3.57 Silberschatz, Galvin and Gagne ©2013

