Lecture 4 : Simulation

Prof. Hee Yong Youn
College of Software
Sungkyunkwan University
Suwon, Korea
youn7147@skku.edu

Modeling and evaluation

\square Modeling and evaluation
\square Two approaches :

- analytical modeling or simulation
\square Analytical modeling :
- math oriented, abstract, compact, simple, and economical
\square Simulation :
- Rule oriented mimicing the phenomenon modeled.

Relies on \qquad number of iterations to extract useful information.

Detailed, complex, flexible, and expensive

Simulation and emulation

\square Simulation vs. emulation
\square Emulation : simulation at the level of \qquad code
\square Simulation : much ___ detailed than emulation
\square Generating random numbers
\square Required to simulate \qquad phenomenon with random variates
\square Using physical process or computer
\square Random number generation by computer

- Pseudo-random due to its \qquad
- Appears to be \qquad statistically
\square Midsquare/ linear congruential/ additive congruential

Midsquare method

\square Midsquare method
$\square(\mathrm{ex})$ seed $=5318$

$$
\begin{aligned}
& 5318^{2}=28 \underline{281124} \\
& 2811^{2}=07 \underline{001721} \\
&{9017^{2}}^{=} 81306289 \\
& \vdots
\end{aligned}
$$

- Flaw: possibly stuck
(ex) 99, 80, 40, 60, 60, ...

Linear congruential method

\square Linear congruential method
$\square z_{n+1}=\left(a z_{n}+c\right) \bmod m$
\square The number of random numbers in a sequence cycle $\left(N_{r}\right) \leq m$
$\square N_{r}=\boldsymbol{m}$ (means the longest cycle) iff
i) $\operatorname{gcd}(m, c)=1$
ii) $(a-1)$ mod (all prime factors of $m)=0$
iii) if $(\boldsymbol{m} \bmod 4)=0$ then $((a-1) \bmod 4)=0$

Linear congruential method

\square Constant selection ($w=$ word length)

- $m=\mathbf{2}^{\text {w }}$
- $c=2^{w-1} \pm 1$
- $a=p^{k}\left(p:\right.$ prime and $\left.\left(p^{k}-1\right) \bmod 4=0\right)$ (ex) $p=13$
$\left(13^{4}-1\right) \bmod 4=28560 \bmod 4=0$
$\left(13^{5}-1\right) \bmod 4=371292 \bmod 4=0$
$\left(13^{6}-1\right) \bmod 4=4826809 \bmod 4=0$

Mixed congruential method

\square Mixed congruential method
\square For linear congruential, when $c>$ \qquad
$\square(E x 4.1)$ Generate a sequence with $m=16, a=13, c=11$, seed $=1$
\square Check the conditions of m, a, c for max. period
$\square(13 \times 1+11) \bmod 16=8$
$(13 \times 8+11) \bmod 16=115 \bmod 16=3$
$(13 \times 3+11) \bmod 16=50 \bmod 16=2$
\vdots

Multiplicative congruential method

For linear congruential, with $c=$ \qquad
\square Max. period $=\frac{m}{4} \quad$ if z_{0} is odd and $a=8 k+1$ for some k
(ex) $m=2^{4}=16, z_{0}=3, a=9$
$\left.\begin{array}{l}(9 \times 3) \bmod 16=11 \\ (9 \times 11) \bmod 16=3\end{array}\right\}$
$3,11,3,11, \ldots($ period $=$ \qquad
if $z_{0}=10,(9 \times 10) \bmod 16=10,10, \ldots$ (So, seed selection is important!)
$\square(E x 4.2)$ Generate a sequence with $m=16, a=9$, seed $=7$
$\square(9 \times 7) \bmod 16=63 \bmod 16=15$
$(9 \times 15) \bmod 16=135 \bmod 16=7($ period $=$ \qquad)

- If $a=11$,
$(11 \times 7) \bmod 16=77 \bmod 16=13$
$(11 \times 13) \bmod 16=143 \bmod 16=15$
$(11 \times 15) \bmod 16=165 \bmod 16=5$
$(11 \times 5) \bmod 16=55 \bmod 16=7($ period $=$ \qquad) (So, a is important!)

Multiplicative congruential method

\square Good selection of ' a ' and seed
$\square a \approx \sqrt{\mathrm{~m}}$ and the last three bits are ' 011 ' or ' 101 '
\square Also, the number of 1's should be as \qquad as possible
\square Seed must be \qquad

$$
\text { (ex) } a=0101=5 \text {, seed }=3
$$

$\left.\begin{array}{rl}(5 \times 3) \bmod 16 & =15 \\ (5 \times 15) \bmod 16 & =11 \\ (5 \times 11) \bmod 16 & =7 \\ (5 \times 7) \bmod 16 & =3 \\ (5 \times 3) \bmod 16 & =15\end{array}\right\} \frac{16}{4}$
\square Good choice for 16-bit computer

$$
\begin{aligned}
& m=2^{16}, a=2^{8}+5=261=(100000101)_{2} \\
& z_{0}=129=(10000001)_{2}
\end{aligned}
$$

Additive congruential

\square For random number sequence whose period is greater than 2^{w}
\square Use an existing sequence
$\square z_{n}=\left(z_{n-1}+z_{n-k}\right) \bmod m$

- If $\boldsymbol{k}=\mathbf{2}$, Fibonacci generator
\square Generalization of additive congruential
$\square z_{n}=\left(\sum_{j=1}^{k} a_{j} z_{n-j}\right) \bmod m$
\square The \qquad is as large as $m^{k}-1$
\square Generate a sequence with $0,7,10,9$, and $k=4, a_{i}=1(1 \leq i \leq 4)$

$$
\begin{aligned}
& z_{4}=\left(z_{3}+z_{0}\right) \bmod 16=(0+9) \bmod 16=9 \\
& z_{5}=(7+9) \bmod 16=0 \\
& z_{6}=(10+0) \bmod 16=10 \\
& z_{7}=(9+10) \bmod 16=3 \\
& \vdots
\end{aligned}
$$

\square Are the numbers in the sequence unique?

Tausworthe's bitwise manipulation

$\square b_{n}=\left(b_{n-r}+b_{n-q}\right) \bmod 2=b_{n-r} \oplus b_{n-q}$
\square The \qquad is independent of \boldsymbol{w}
$\square(E x) \boldsymbol{b}_{\boldsymbol{n}}=\boldsymbol{b}_{\boldsymbol{n - 1}} \oplus \boldsymbol{b}_{\boldsymbol{n}-3}$, seed $=5(\mathbf{0 1 0 1})$

$$
b_{0} b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{7} b_{8} b_{9}
$$

0101
5
1010
10
0
4
$1 \quad 9$

13
17
014

Validation techniques

\square Validation techniques
\square A random number sequence is checked for

- ___ distribution

Check for uniform distribution

$\square \chi^{2}$ (chi-squared) method
\square Comparison of two \qquad s

- A \qquad
\qquad generated from the two r.v.'s compared
\square If $\chi^{2} \rightarrow \mathbf{0}$, it is said that the two r.v.'s have the same limiting distribution with probability $1-F\left(\chi^{2}\right)$
- $\chi^{2} \equiv \sum_{n=1}^{N} \frac{\left(O_{n}-E_{n}\right)^{2}}{E_{n}}$
O_{n} : number of observed occurrences in a subrange n
E_{n} : number of expected occurrences by the assumed density for the subrange n
- Why divide by $\boldsymbol{E}_{\boldsymbol{n}}$?

Table lookup method

$\square N$: Number of subranges
$\square R$: Number of parameters in the PDF
$R=1$ for uniform, poisson, exponential
$R=\mathbf{2}$ for normal and Weibull
\square D.F. $($ degree of freedom) $=N-R$

\square "If $\chi^{2} \leq x$, then the distribution cannot be rejected with probability F. In other words, accepted with probability 1-F."

Table lookup method (χ^{2} table)

Chi-Squared Distribution

$n F$.010	.050	.100	.250	.500	.750	.900	.950	.990
3	.115	.352	.584	1.21	2.37	4.11	6.25	7.81	11.3
4	.297	.711	1.06	1.92	3.36	5.39	7.78	9.49	13.3
5	.554	1.15	1.61	2.67	4.35	6.63	9.24	11.1	15.1
6	.872	1.64	2.20	3.45	5.35	7.84	10.6	12.6	16.8
7	1.24	2.17	2.83	4.25	6.35	9.04	12.0	14.1	18.5
8	1.65	2.73	3.49	5.07	7.34	10.2	13.4	15.5	20.1
9	2.09	3.33	4.17	5.90	8.34	11.4	14.7	16.9	21.7
10	2.56	3.94	4.87	6.74	9.34	12.5	16.0	18.3	23.2
11	3.05	4.57	5.58	7.58	10.3	13.7	17.3	19.7	24.7
12	3.57	5.23	6.30	8.44	11.3	14.8	18.5	21.0	26.2
13	4.11	5.89	7.04	9.30	12.3	16.0	19.8	22.4	27.7
14	4.66	6.57	7.79	10.2	13.3	17.1	21.1	23.7	29.1
15	5.23	7.26	8.55	11.0	14.3	18.2	22.3	25.0	30.6
16	5.81	7.96	9.31	11.9	15.3	19.4	23.5	26.3	32.0
17	6.41	8.67	10.1	12.8	16.3	20.5	24.8	27.6	33.4
18	7.01	9.39	10.9	13.7	17.3	21.6	26.0	28.9	34.8
19	7.63	10.1	11.7	14.6	18.3	22.7	27.2	30.1	36.2
20	8.26	10.9	12.4	15.5	19.3	23.8	28.4	31.4	37.6
21	8.90	11.6	13.2	16.3	20.3	24.9	29.6	32.7	38.9
22	9.54	12.3	14.0	$17: 2$	21.3	26.0	30.8	33.9	40.3
23	10.2	13.1	14.8	18.1	22.3	27.1	32.0	35.2	41.6
24	10.9	13.8	15.7	19.0	23.3	28.2	33.2	36.4	43.0
25	11.5	14.6	16.5	19.9	24.3	29.3	34.4	37.7	44.3
26	12.2	15.4	17.3	20.8	25.3	30.4	35.6	38.9	45.6
27	12.9	16.2	18.1	21.7	26.3	31.5	36.7	40.1	47.0
28	13.6	16.9	18.9	22.7	27.3	32.6	37.9	41.3	48.3
29	14.3	17.7	19.8	23.6	28.3	33.7	39.1	42.6	49.6
30	15.0	18.5	20.6	24.5	29.3	34.8	40.3	43.8	50.9

This table is reprinted with permission from Standard Mathematical Tables © 1976 CRC Press, Boca Raton, FL.

Table lookup method (test procedure)

\square Input is the table containing the sample data $\left(O_{n}\right)$

1. Predict the distribution based on the sample data (also decide the parameter values)
2. Obtain the expected number of occurrences for each subrange using the predicted distribution $\left(E_{n}\right)$
3. Obtain χ^{2}
4. Make a decision

Table lookup method

\square (Em 4.8)

No. of broken parts	No. of Shipments	Predicted no. of shipments
0	10	
1	41	
2	57	
3	55	
4	43	
5	27	
6	11	

1. Assume \qquad distribution
Total shipments $=244$
Expected no of broken parts/shipment $=$ $(0 \times 10+1 \times 41+2 \times 57+\ldots+6 \times 11) / 244=2.84$
2. $P[k=0]=\left(2.84^{0} / 0!\right) \mathrm{e}^{-2.84}=0.0584$,
$\mathrm{E}_{0}=244 \times 0.0584=14.3$
$P[k=1]=\left(2.84^{1} / 1!\right) \mathrm{e}^{-2.84}=0.17$,
$E_{1}=244 \times 0.17=40.5$
3. $\chi^{2}=(10-14.3)^{2} / 14.3+(41-40.5)^{2} / 40.5+\ldots$

$$
=3.034
$$

4. D.F. $=7-1=6$, from χ^{2} table, accept the model with probability of $\mathbf{0 . 7 5}$.

Table lookup method

\square (Ex 4.4) Would you accept with $\mathbf{9 0 \%}$ confidence, a RNG of the following table?

Range	Occurrence
$0.0 \sim 0.1$	21
$0.1 \sim 0.2$	20
$0.2 \sim 0.3$	19
$0.3 \sim 0.4$	17
$0.4 \sim 0.5$	22
$0.5 \sim 0.6$	21
$0.6 \sim 0.7$	20
$0.7 \sim 0.8$	18
$0.8 \sim 0.9$	21
$0.9 \sim 1.0$	21

1. Assume \qquad distribution
Total occurrence $=200$
Expected no occurrences/subrange = $200 / 10=20$
2. $\mathrm{E}_{0}=20$
$\mathrm{E}_{1}=20$

+

3. $\chi^{2}=(21-20)^{2} / 20+(20-20)^{2} / 20+\ldots$

$$
=22 / 20=1.1
$$

4. D.F. $=10-1=9$, from χ^{2} table, accept the model with probability of $\mathbf{0 . 9 9}$.

Check for independence

\square Serial test
\square Run-up test
\square Relative distance test
\square Serial-correlation test
\square Serial test
\square Check increasing n-tuples of the sequence for \qquad with χ^{2} test method

Run-up test

\square Count the no. of \qquad increasing sequences of length $1,2, \ldots$, or ≥ 6
\square Construct an r.v. from the data, and test it for independency with $\chi^{\mathbf{2}}$
$\square R=\frac{1}{N} \sum_{j=1}^{6} \sum_{k=1}^{6} A_{j k}\left(r_{j}-N B_{j}\right)\left(r_{k}-N B_{k}\right)$
(r : No. of run-ups of length i, N : length of the sequence, $\mathrm{DF}=6$)
$\square(E m 4.10) \frac{0710}{3} \frac{9}{1} \frac{41114}{3} \frac{14}{1} \frac{515}{2} \frac{812}{2} \frac{7}{1} \frac{5}{1}$

$$
r_{1}=\ldots, r_{2}=\ldots, r_{3}=\ldots, r_{4}=0, r_{5}=0, r_{6}=0
$$

$\square R=2.59$, and conclude that the sequence is independent with confidence 0.75

Relative distance(RD) test

\square

$\square \mathbf{R D}=\left\{\begin{array}{l}\left(1-z_{n}\right)+z_{n+1} \\ z_{n+1}-z_{n}\end{array}\right.$
if $z_{n+1}<z_{n}$ otherwiseTest RD sequence for \qquad with χ^{2}

Serial-correlation test

\square Covariance of r.v.'s

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-2 E[X] E[Y]+E[X] E[Y] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

\square If X and Y are independent, then $E[X Y]=E[X] E[Y] \rightarrow \operatorname{cov}(X, Y)=0$
\square If $\operatorname{cov}(X, Y) \geq 0$, then X, Y are \qquad
$\square \boldsymbol{R}_{\boldsymbol{k}}$: autocovariance at $\log k$ between x_{n} and x_{n+k}
$\square R_{k}=\frac{1}{n-k} \sum_{i=1}^{n-k}\left(z_{i}-\mathbf{1} / 2\right)\left(z_{i+k}-1 / 2\right)$
n : No. of elements in the sequence

$$
E[Z]=1 / 2
$$

\square When $n \rightarrow \infty, R_{k} \rightarrow N\left(0,\left(\frac{1}{12 \sqrt{n-k}}\right)^{2}\right)$

Serial-correlation test

(ex) $x_{n}=7^{5} x_{n-1} \bmod \left(2^{31}-1\right), n=10,000$

		Standard Lag k	Autocovariance R_{k}	Deviation of R_{k}
			Upper Limit	
1	-0.000038	0.000833	-0.001409	0.001333
2	-0.001017	0.000833	-0.002388	0.000354
3	-0.000489	0.000833	-0.001860	0.000882
4	-0.000033	0.000834	-0.001404	0.001339
5	-0.000531	0.000834	-0.001902	0.000840
6	-0.001277	0.000834	-0.002648	0.000095
7	-0.000385	0.000834	-0.001757	0.000986
8	-0.000207	0.000834	-0.001579	0.001164
9	0.001031	0.000834	-0.000340	0.002403
10	-0.000224	0.000834	-0.001595	0.001148

Serial-correlation test (procedure)

1. Get R_{k}
2. Obtain standard deviation by $\frac{1}{12 \sqrt{n-k}}$
3. Obtain confidence interval
a. 90% confidence $\rightarrow \alpha=0.1, p=1-\alpha / 2=0.95, Z_{0.95}=1.645$

4. If the interval does not include 0 , then the correlation is \qquad .
R_{k} is the \qquad point of the limits.

Recommended random number generation

\square For 32-bit

- $z_{n}=A z_{n-1} \bmod \left(2^{31}-1\right)$ $A=16807$ (minimal standard with period of $2^{31}-2$), 48271, or 69621
\square For 16-bit
- $z(i)_{n}=A_{i} z(i)_{n-1} \bmod B_{i}$

$$
\begin{array}{lll}
A_{1}=157 & A_{2}=146 & A_{3}=142 \\
B_{1}=32363 & B_{2}=31727 & B_{3}=\mathbf{3 1 6 5 7}
\end{array}
$$

- $z_{n}=\left(z(1)_{n}-z(2)_{n}-z(3)_{n}\right) \bmod 32362$

Overflow problem

\square Overflow problem of $A z_{n-1}$ with LCG method

$$
\operatorname{ax} \bmod m=g(x)+m h(x)
$$

$$
\left\{\begin{array}{l}
g(x)=a(x \bmod q)-r(x \operatorname{div} q) \\
h(x)=(x \operatorname{div} q)-(\operatorname{ax} \operatorname{div} m)
\end{array}\right.
$$

$q=m \operatorname{div} a, r=m \bmod a$
If $\boldsymbol{q}>\boldsymbol{r}$, then

$$
h(x)= \begin{cases}1 & \text { if } g(x)<0 \\ 0 & \text { otherwise }\end{cases}
$$

\square We must decide a such that $q>r$ to avoid the computation of $h(x)$
$\square(\mathrm{Ex}) a=3, x=6, m=15$

Seed selection and use of sequence

\square Avoid \qquad values
\square Do not \qquad a stream
\square Do not \qquad streams
\square Do not use \qquad seeds
\square Since no \qquad

- No guarantee of avoidance of overlap

Generating random numbers of nonuniform distribution

\square Given : \qquad of desired r.v.
\square Obtained: random numbers of the desired distribution
\square Inversion/ composition/ rejection method

Inversion method

\square Inversion method
$Z \equiv F(Y)(Y$ is desired r.v.)

$$
\begin{aligned}
G(z) & =P[Z \leq z] \\
& =P[F(Y) \leq z] \\
& =P\left[Y \leq F^{-1}(z)\right] \\
& =F\left(F^{-1}(z)\right) \\
& =z, 0 \leq z<1
\end{aligned}
$$

Inversion method

$\square($ ex) exponential distribution

$$
\begin{aligned}
& \begin{array}{l}
F(y)=1-\mathrm{e}^{-\lambda y}=z \\
-\mathrm{e}^{-\lambda y}=z-1 \\
-\lambda y=\ln (1-z) \\
y=-\frac{1}{\lambda} \ln (1-z)
\end{array} \\
& \text { Since } 0 \leq z<1, y=-\frac{1}{\lambda} \ln z
\end{aligned}
$$

Composition method

\square Generate a random variable using the composite of another random variable of a different distribution
\square (ex) Poisson distribution (λ) (T is given input constant)

- Interarrival time is \qquad distribution
\square The value of target random variable is the number of random variables of exponential distribution whose sum $\geq T$
\square Procedure
i) Generate random numbers of \qquad distribution, x_{1}, x_{2}, \ldots
ii) Stop when $x_{1}+\cdots+x_{m} \geq T$
iii) $k=m-1$

Composition method (Poisson distribution)

\square Since $x_{i}=-\frac{1}{\lambda} \ln z_{i}$,

$$
\begin{aligned}
& -\frac{1}{\lambda}\left(\ln z_{1}+\ln z_{2}+\ldots+\ln z_{m}\right)=-\frac{1}{\lambda} \ln \left(z_{1} z_{2} \ldots z_{m}\right) \geq T \\
& \ln \left(z_{1} z_{2} \cdots z_{m}\right) \leq-\lambda T \\
& z_{1} z_{2} \cdots z_{m} \leq e^{-\lambda T}
\end{aligned}
$$

So i) Generate \qquad r.v. z_{1}, z_{2}, \ldots
ii) Stop when $z_{1} z_{2} \ldots z_{m} \leq e^{-\lambda T}$
iii) $k=m-1$

Composition method (Poisson distribution)

ㅁ (Proof)
$\operatorname{Prob}\left[\left(x_{1}+\ldots+x_{m}\right) \geq T\right]=\frac{1}{(m-1)!} \int_{\lambda}^{\infty} t^{m-1} e^{-t} d t($ if $T=1)$
$\operatorname{Prob}[k=n]=\frac{1}{n!} \int_{\lambda}^{\infty} t^{n} e^{-t} d t-\frac{1}{(n-1)!} \int_{\lambda}^{\infty} t^{n-1} e^{-t} d t$
$=\boldsymbol{e}^{-\lambda} \frac{\lambda^{n}}{n!}$

Composition method

\square (ex) Geometric distribution(p)
\square Procedure 1: count the number of consecutive trials up to the \qquad success
\square Procedure 2: $k=\left\lceil\frac{\ln z}{\ln (1-p)}\right\rceil$
$\left\lceil\frac{\ln z}{\ln (1-p)}\right\rceil=n$ iff $\quad(n-1)<\frac{\ln z}{\ln (1-p)} \leq n$

$$
n \ln (1-p)<\ln z<(n-1) \ln (1-p)
$$

$$
(1-p)^{n}<z \leq(1-p)^{n-1} \equiv \text { event } A
$$

$$
\operatorname{Prob}[A]=(1-p)^{n-1} p
$$

Composition method

\square (ex) Binomial distribution(p,n)

- Procedure
i) Generate $z_{1}, \ldots, z_{\mathrm{n}}$
ii) $k=$ no. of z_{i}^{\prime} 's which are $<p$
- Procedure for small p
i) $\operatorname{sum}=0 ; i=1$
ii) $G_{i}(p)=\left\lceil\frac{\ln z_{i}}{\ln (1-p)}\right\rceil ; \operatorname{sum}=\operatorname{sum}+G_{i}(p)$
ii) If $\operatorname{sum}<n$, then $i=i+1$; go to ii)

$$
\text { else } k=i-1
$$

Composition method (Binomial distribution)

\square Inversion method
i) Compute $F(x), x=0,1,2, \ldots, n$ and store.
ii) Generate z_{i}, and find x such that

$$
F(x) \leq z_{i}<F(x+1) ; k=x
$$

Rejection method

\square Generate r.v. X of density $f(t)$ using another r.v. Y of density $g(t)$, where $f(t) \leq \operatorname{cg}(t)$ for all $t(c$ is a positive constant. $c g(t)$ covers $f(t))$
\square Good for small c
\square Procedure
i) Generate X using $g(t)$
ii) Generate z
iii) if $z \geq \frac{\mathrm{f}(\mathrm{x})}{\operatorname{cg}(\mathrm{x})}$, then reject X, go to i)
else X is accepted

Rejection method

\square (ex) normal distribution (μ, σ)
i) Generate $z_{1}, x=-\ln z_{1} \quad(\operatorname{exponential}$ distribution with $\lambda=1)$
ii) Generate z_{2}
iii) If $z_{2}>\mathrm{e}^{-(\mathrm{x}-1)^{2} / 2}$, then go to i)
iv) Generate z_{3} (to decide left or right after accepted)
v) If $z_{3}>0.5$, then return $\mu+\sigma x$
else return $\mu-\sigma x$

Simulations

\square Simulation time: time expired in \qquad system
\square Run time: time expired for the \qquad of simulation
\square Events: operations causing a \qquad of state

Types of simulation

\square Time-based/event based
\square Time-based simulation
\square \qquad control
\square Good for the problems having \qquad events at any moment
\square Highly likely an \qquad at each clock
\square Event-based simulation
\square Execution of main control loop represents a single \qquad
\square Use event queue

Types of simulation

FIGURE 4.4 Event-Based Simulation Control Flow

Comparison of time vs. event-based simulation

\square (ex) Simulation of Poisson arrival and the processing of the jobs

- Time-based simulation
while $t<t_{\text {max }}$ do
- next job arrives t_{j} time later according to \qquad distribution
- $t_{n}=t+t_{j}$
- until $t_{n}<t$ do $t=t+\Delta t$
- process new job
- collect statistical data
report statistics

Comparison of time vs. event-based simulation

- Event-based simulation
while $t<t_{\text {max }}$ do
- $t=t+\Delta t$
- N jobs arrive during Δt according to \qquad distribution
- Process N new jobs
- collect statistical data
report statistics

Comparison of time vs. event-based simulation

EX 4.15.Time-based simulation for instruction execution speed

Get input parameter

(Input)
-Frequency of inst length
($1 / 2 / 3$) in PROBIN
-Memory speed (MEMSTEP)
-Prob of memory access with
each length of inst (PROBMEM)
(Output)
-No of instruction execution per sec $=$
EXECI/(MAXSTEP x Clock period)

Comparison of time vs. event-based simulation

EX 4.16. Event-based simulation for disk access time

(Input)
-P: prob of accessing the same track
-No of tracks: 75
-LATENCY: one rotation time
-SEEK: time taken for the arm to move one track
(Output)
-AVG.DELAY: time taken for one file access

Accumulating statistics

\square Accumulating statistics
\square Trace or logs : too voluminous
\square Statistics : useful behavior characteristics

- Mean

$$
\bar{k}=\mathrm{E}[k]=\sum_{k=-\infty}^{\infty} k f_{k}
$$

- Standard deviation

$$
\begin{aligned}
& \sigma_{k}=\left(\mathbf{E}\left[k^{2}\right]-(\mathrm{E}[k])^{2}\right)^{1 / 2} \\
& \mathbf{E}\left[k^{2}\right]=\sum_{k=-\infty}^{\infty} k^{2} f_{k}
\end{aligned}
$$

Accumulating statistics

\square Any particular simulation run is a particular \qquad of the stochastic process
\square Calculation \qquad does not require to store all sample points but the running sum

Accumulating statistics

- (ex) simulation data: $1,3,0,2,1,4,2$

Frequency table:

K	$\mathbf{0}$	$\mathbf{1}$	2	3	4
No. of observations	1	2	2	1	1
PDF	$1 / 7$	$2 / 7$	$2 / 7$	$1 / 7$	$1 / 7$

$\left\{\begin{array}{l}\bar{k}=\mathrm{E}[k]=1 \times \frac{2}{7}+2 \times \frac{2}{7}+3 \times \frac{1}{7}+4 \times \frac{1}{7}=\frac{13}{7}, ~\end{array}\right.$
Calculation on the fly :

$$
\frac{1+3+0+2+1+4+2}{7}=\frac{13}{7}
$$

$$
\mathbf{E}\left[k^{2}\right]=1 \times \frac{2}{7}+4 \times \frac{2}{7}+9 \times \frac{1}{7}+16 \times \frac{1}{7}=\frac{35}{7}
$$

Calculation on the fly :

$$
\frac{1^{2}+3^{2}+0^{2}+2^{2}+1^{2}+4^{2}+2^{2}}{7}=\frac{35}{7}
$$

Accumulating statistics

\square Problems of running sum
\square No additional statistics can be extracted later

- Overflow or precision problem
\square Solution
If the range is small and known, use \qquad .
\square Otherwise, use running sum with \qquad frequency array.

Accumulating statistics

\square (ex) waiting time $\left(t_{w}\right)$

Customer

$-t_{w}=\frac{\sum_{\mathrm{j}=1}^{5}\left(\mathrm{C}_{\mathrm{j} 0}-\mathrm{C}_{\mathrm{ji}}\right)}{5}$

- Running sum approach

$$
t_{w}=\frac{t_{1} \times 1+t_{2} \times 2+t_{3} \times 1+t_{4} \times 1+t_{5} \times 2+t_{6} \times 3+t_{7} \times 2+t_{8} \times 1}{5}
$$

Analyzing simulation results

\square Data collection range determines simulation accuracy and length of run time
\square Startup transients

Analyzing simulation results

\square Approaches for maximizing simulation accuracy

- Run the simulation \qquad (expensive and nondeterministic)
- Truncate data up to certain point (\qquad state)
\square Start at \qquad point
\square Use running average crossings

Confidence intervals

\square Repeating simulation with different seeds yields different results
\square If runs are long enough to justify the assumption of \qquad distribution, the \qquad distribution can be used to provide a confidence level and range of values of the results
\square (ex) 5 runs provide $x_{\boldsymbol{k}}$'s as $11,12,10,14,13$

$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \sum_{k=1}^{n} x_{k}=(11+12+10+14+13) / 5=12 \\
& s^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}=(1+0+4+4+1) / 4=2.5
\end{aligned}
$$

For confidence of $\mathbf{9 8 \%}, v=n-1, t_{4,0.98}=3.747$

$$
\varepsilon=3.747\left(\frac{\mathrm{~s}^{2}}{\mathrm{n}}\right)^{0.5}=2.65
$$

Thus, $x=12 \pm 2.65$ with 98% confidence

Student- t distribution

Student-t Distribution

	Confidence Probability			
v	.80	.90	.96	.98
1	3.078	6.314	15.895	31.821
2	1.886	2.920	4.849	6.965
3	1.638	2.353	3.482	4.541
4	1.533	2.132	2.999	3.747
5	1.476	2.015	2.757	3.365
6	1.440	1.943	2.612	3.143
7	1.415	1.895	2.517	2.998
8	1.397	1.860	2.449	2.896
9	1.383	1.833	2.398	2.821
10	1.372	1.812	2.359	2.764
11	1.363	1.796	2.328	2.718
12	1.356	1.782	2.303	2.681
13	1.350	1.771	2.282	2.650
14	1.345	1.761	2.264	2.624
15	1.341	1.753	2.249	2.602
16	1.337	1.746	2.235	2.583
17	1.333	1.740	2.224	2.567
18	1.330	1.734	2.214	2.552
19	1.328	1.729	2.205	2.539
20	1.325	1.725	2.197	2.528
25	1.316	1.708	2.167	2.485
30	1.310	1.697	2.147	2.457
40	1.303	1.684	2.123	2.423
50	1.299	1.676	2.109	2.403
75	1.293	1.665	2.090	2.377
100	1.290	1.660	2.081	2.364
∞	1.282	1.645	2.054	2.326

This table is reprinted with permission from Standard Mathematical Tables © 1976 CRC Press, Boca Raton, FL.

Regenerative simulation

\square If we know the stochastic process for its \qquad points, we can start and stop the simulation at those points.
\square For n of these runs with average length N,

$$
\varepsilon=\frac{t_{\alpha, p}}{N}\left(\frac{s^{2}}{n}\right)^{\frac{1}{2}}
$$

\square Due to independency of the r.v.'s (n of them), if the number of intervals is large, the output variables tend toward a \qquad distribution
\square In practice, regenerative simulation is difficult since finding renewal points is very difficult

