Lecture 7 : Networks of queues

Prof. Hee Yong Youn
College of Software
Sungkyunkwan University
Suwon, Korea
youn7147@skku.edu

Open/closed queuing network

Relative throughputs and utilities

\square Using routing chain, we obtain relative throughputs, visit ratios, relative utilities

$$
\vec{\lambda} P=\vec{\lambda}
$$

$\square \lambda_{j}=\lambda_{1} P_{1 j}+\lambda_{2} P_{2 j}+\ldots+\lambda_{i} P_{i j}+\lambda_{j} P_{i j}+\ldots+\lambda_{m} P_{m j}$ (if there exist m queues)

Relative throughput, r_{i}, and visit ratio, v_{i}

ㅁ (ex)

$$
\boldsymbol{V}_{i}=\frac{\lambda_{i}}{\lambda_{1}}=\frac{\boldsymbol{r}_{i}}{\boldsymbol{r}_{\mathbf{1}}} \quad \text { (larger throughput implies more }
$$

Relative utility, $\boldsymbol{u}_{\boldsymbol{i}}$

$$
\begin{aligned}
& \rho_{i}=\frac{\lambda_{i}}{\mu_{i}}, \lambda_{i}=\mu_{i} \rho_{i} \Leftrightarrow \boldsymbol{r}_{i}=\mu_{i} \boldsymbol{u}_{i} \\
& \sum_{i=1}^{M} \boldsymbol{r}_{i} \boldsymbol{P}_{i j}=\boldsymbol{r}_{j} \Leftrightarrow \sum_{i=1}^{M} \mu_{i} \boldsymbol{u}_{i} \boldsymbol{P}_{i j}=\mu_{j} \boldsymbol{u}_{j} \\
& \left.\boldsymbol{u}_{i}=\frac{\boldsymbol{r}_{i}}{\mu_{i}} \text { (here } \boldsymbol{r}_{i} \text { is solved, } \mu_{i} \text { is given }\right)
\end{aligned}
$$

M \rightarrow M property

\square To study the output process of a queue
\square Output process $=f($ input process, queuing discipline, service process)
\square A queue has the $M \rightarrow M$ property if when the input is a Poisson process, so is the output. Then timing and order may be different (jobs may be delayed and priority orders become different) but both input and output have same Poisson parameter (λ)

FCFS M/M/1 queue

(Inter-departure time PDF, $d(t)$)
$D^{*}(s \mid b u s y)=\frac{\mu}{\mu+s} \quad ;\left(\right.$ ex) $d_{2}=x_{2}$ (when C_{2} arrives, server is busy)
$D^{\prime \prime}(s \mid$ idle $)=\frac{\mu}{\mu+s} \cdot \frac{\lambda}{\lambda+s} \underset{~(\text { ex })}{\mathbf{d}_{3}=\mathbf{r}_{3}+\mathbf{x}_{\mathbf{3}}\left(\text { when } \mathbf{C}_{3} \text { arrives, server is idle) }\right) ~}$
$D^{*}(s)=\rho \frac{\mu}{\mu+s}+(1-\rho)\left[\frac{\mu}{\mu+s} \frac{\lambda}{\lambda+s}\right]=\frac{\lambda}{\lambda+s}$
So $M / \mathrm{M} / 1$ queue has the $M \Rightarrow$ M property

Easier checking for $\mathbf{M} \rightarrow \mathbf{M}$ property

\square Without deriving the output process
\square At steady-state

$\pi_{\mathrm{n}+1} \mathrm{R}(\mathrm{n}+1 \rightarrow \mathrm{n})=\pi_{\mathrm{n}} \lambda, \quad \forall \mathrm{n}$
(R is the rate of departure)
"No memory in the departure process indicates that even though the departure rate in any state is higher than the arrival rate, it cannot be compensated by a \qquad number state"
\square Checking is done by obtaining the steady-state probability relationship and then substituting it into the state balance equation to check the consistency

Easier checking for $\mathbf{M} \rightarrow \mathbf{M}$ property

(ex) $M / M / \infty$ queue

$$
\mathbf{R}(\mathbf{n}+\mathbf{1} \rightarrow \mathbf{n})=(\mathbf{n}+\mathbf{1}) \mu
$$

$$
\pi_{n+1}=\frac{\lambda}{(\mathbf{n}+\mathbf{1}) \mu} \pi_{\mathrm{n}}
$$

$$
\pi_{1}=\frac{\lambda}{\mu} \pi_{0}, \pi_{2}=\frac{\lambda}{2 \mu} \pi_{1}=\frac{\lambda^{2}}{2 \mu^{2}} \pi_{0} \ldots \ldots . . . \pi_{\mathrm{n}}=\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}} \frac{\mathbf{1}}{\mathrm{n}!} \pi_{0}
$$

check

$$
\begin{aligned}
& (\lambda+\mathbf{n} \mu) \pi_{\mathrm{n}}=(\mathbf{n}+1) \mu \pi_{\mathrm{n}+1}+\lambda \pi_{\mathrm{n}-1} \\
& (\lambda+\mathbf{n} \mu)\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}} \frac{1}{\mathrm{n}!} \pi_{0}=(\mathbf{n}+1) \mu\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}+1} \frac{\pi_{0}}{(\mathrm{n}+1)!}+\lambda\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}-1} \frac{\pi_{0}}{(\mathrm{n}-1)!} \\
& =\left(\frac{\lambda}{\mu}\right)^{\mathrm{n}} \frac{1}{\mathrm{n}!} \pi_{0}(\lambda+\mathbf{n} \mu)
\end{aligned}
$$

Feedback

\square Even with Poisson I/O ($\mathbf{M} \Rightarrow \mathbf{M}$), a feedback changes the process to hyperexponential

$$
\lambda=p \lambda^{\prime} \quad \lambda^{\prime}=\frac{\lambda}{p} \quad \rho=\frac{\lambda^{\prime}}{\mu}=\frac{\lambda}{p \mu}
$$

\square For a stable queue, $\rho<1 \rightarrow \lambda<p \mu$

Local balance

\square State of a network is the \qquad of the states of the individual queues
\square Jackson's theorem: Joint PDF of the number of customers in each queue in the network in steady-state is the \qquad of the marginal PDF's irrespective of the type of input processes to the queues (r.v. of the number of customers are \qquad)
\square Local balance: the property allowing the product form of the solution

Local balance

(ex) $\mathbf{2}$ jobs circulating in $M / M / m$ queueing network

Local balance

\square Analysis using global balance via $\pi \mathrm{Q}=0$

\square Analysis using local balance by cutting 2 edges per state that completely isolates all the states, and check the balances \rightarrow stronger requirement than global balance check

Local balance

Local balance

$$
\begin{aligned}
& \pi_{\mathbf{2 0 0}}=\frac{200 \rightarrow \frac{1}{\mu_{1}^{2}}}{\frac{1}{\mu_{1}^{2}}+\frac{1}{\mu_{1} \mu_{3}}+\frac{1}{\mu_{1} \mu_{2}}+\frac{1}{\mu_{2} \mu_{3}}+\frac{1}{\mu_{2}^{2}}+\frac{1}{\mu_{3}^{2}}}=\frac{\frac{1}{\mu_{1}^{2}}}{G(2)} \\
& \pi_{110}=\frac{1}{\mu_{1} \frac{1}{\mu_{2}}, \ldots,}-\quad-\begin{array}{l}
\pi_{200}+\pi_{110}+\pi_{020}+\pi_{101}+\pi_{011}+\pi_{002}=1 \\
\pi_{200}+\left(\mu_{1} / \mu_{2}\right) \pi_{200}+\left(\mu_{3} / \mu_{2}\right)^{2} \pi_{200}+\left(\mu_{1} / \mu_{3}\right) \\
\pi_{200}+\left(\mu_{1}^{2} / \mu_{2} \mu_{3}\right) \pi_{200}+\left(\mu_{1}^{2} / \mu_{2} \mu_{3}\right) \pi_{200}=1
\end{array} \\
& \pi_{\mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{\mathbf{3}}}=\frac{\left(\frac{\mathbf{1}}{\mu_{1}}\right)^{\mathbf{n}_{1}}\left(\frac{\mathbf{1}}{\mu_{2}}\right)^{\mathbf{n}_{\mathbf{2}}}\left(\frac{\mathbf{1}}{\mu_{3}}\right)^{\mathbf{n}_{3}}}{\mathbf{G (2)}}, \mathbf{n}_{\mathbf{i}}=\mathbf{0 , 1 , 2 \&} \sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}}=\mathbf{2}
\end{aligned}
$$

$\square \pi_{n_{1} n_{2} n_{3}}$ will satisfy the global balance equations
(ex) Check with $\left(\mu_{1}+\mu_{2}\right) \pi_{110}=\mu_{1} \pi_{200}+\mu_{3} \pi_{011}$

Product form solution

\square Local balance solution technique used in networks is similar to the technique used for birth-death systems
\square General B-D queue: $\pi_{k}=\left(\prod_{j=0}^{k-1} \frac{\lambda_{j}}{\mu_{j+1}}\right) \pi_{0}$
M/M/1 queue: $\pi_{k}=\rho^{k} \pi_{0}=\rho^{k}(1-\rho)$
M/M/ ∞ queue: $\pi_{k}=\frac{\rho^{k}}{k!} \pi_{0}=\frac{\rho^{k}}{k!} e^{-\frac{\lambda}{\mu}}$

Product form solution

\square General queueing network of single server queues satisfying local balance

$$
\pi_{n_{1} n_{2} \ldots n_{M}}=\frac{\rho_{1}^{n_{1}} \rho_{2}^{n_{2}} \ldots \rho_{M}^{n_{M}}}{C}(\mathbb{C} \text { is normalization constant for making it a PDF })
$$

\square

$$
C=\left\{\begin{array}{l}
\left.\frac{1}{\pi_{00 . . .0}} \text { (for open } \mathrm{NWs}\right) \\
P[\mathbf{N} \text { customers in } \mathrm{NW}](\text { for closed } \mathrm{NWs})
\end{array}\right.
$$

Product form solution

\square Open NW of M/M/1 queues
$\pi_{n_{1} n_{2} \ldots \mathrm{n}_{\mathrm{M}}}=\underbrace{\left(1-\rho_{1}\right) \rho_{1}^{\mathrm{n}_{1}}(\overbrace{1-\rho_{2}}) \rho_{2}^{\mathbf{n}_{2}} \ldots\left(1-\rho_{M}\right)}_{-}) \rho_{\mathrm{M}}^{\mathrm{n}_{\mathrm{M}}}$
(calculated from \qquad , as λ_{M} / μ_{M})
\square Open NW of M/M/S $\mathbf{S}_{\mathbf{i}}$ queues
S_{i} : no. of servers in queue-i

$$
\mathbf{f}_{\mathrm{i}}\left(\mathbf{n}_{\mathbf{i}}\right) \equiv\left\{\begin{array}{l}
\frac{\mathbf{n}_{i}!}{\mathbf{S}_{\mathrm{i}}^{n_{i}}} \mathbf{n}_{\mathrm{i}}<\mathbf{S}_{\mathrm{i}} \\
\frac{\mathbf{S}_{i}!}{\mathbf{S}_{\mathrm{i}}!} \mathbf{n}_{\mathrm{i}} \geq \mathbf{S}_{\mathrm{i}}
\end{array} \quad \pi_{n_{1} \mathbf{n}_{2} . . \mathbf{n}_{\mathrm{M}}}=\frac{\rho_{1}^{\mathbf{n}_{1}} \rho_{2}^{\mathbf{n}_{2}} \ldots . . \rho_{\mathrm{M}}^{\mathbf{n}_{\mathrm{M}}}}{\mathbf{f}_{1}\left(\mathbf{n}_{1}\right) \mathbf{f}_{2}\left(\mathbf{n}_{2}\right) . . \mathbf{f}_{\mathrm{M}}\left(\mathbf{n}_{\mathrm{M}}\right) \mathbf{C}}\right.
$$

Product form solution summary

\square Short cut solutions (product form) possible with local balance NWs
\square Any NW composed of queues, each having the $M \Rightarrow M$ property, will satisfy local balance
\square NWs constructed from $M \Rightarrow$ M queues permit product form solutions

The queue types yielding product form NWs
\square FCFS with exp. dist. service time.
\square LCFS preemptive-resume, processor sharing, infinite server with Coxian distribution service time

Solving open networks

(ex)

Avg. no. of customers in the queue

$$
\mathbf{E}[\mathbf{n}]=\mathbf{N}_{\mathbf{1}}=\frac{\rho_{1}}{1-\rho_{1}}=\frac{\frac{\lambda_{1}}{\mu_{1}}}{1-\frac{\lambda_{1}}{\mu_{1}}}=\frac{\frac{\lambda}{\mu_{1}(1-p)}}{1-\frac{\lambda}{\mu_{1}(1-p)}}=\frac{\lambda}{\mu_{1}(1-p)-\lambda}
$$

Solving open networks

$T_{1}=$ Avg. time in the queue considering only the queue and server

$$
=\frac{\mathbf{N}_{1}}{\lambda_{1}}=\frac{\lambda}{\frac{\lambda}{1-\mathbf{p}}\left(\mu_{1}(\mathbf{1}-\mathbf{p})-\lambda\right)}=\frac{\mathbf{1}}{\mu_{1}-\frac{\lambda}{1-\mathbf{p}}}=\frac{\mathbf{1}-\mathbf{p}}{\mu_{1}(\mathbf{1}-\mathbf{p})-\lambda}
$$

$T_{1}=$ Avg. time in the queue considering the feedback also

$$
=\frac{\mathbf{N}_{1}}{\lambda}=\frac{\mathbf{1}}{\mu_{1}(\mathbf{1}-\mathbf{p})-\lambda}
$$

Solving open networks

$T_{1}=$ Avg. time in the queue considering only the queue and server

$$
=\frac{\mathbf{N}_{1}}{\lambda_{1}}=\frac{\lambda}{\frac{\lambda}{1-\mathbf{p}}\left(\mu_{1}(\mathbf{1}-\mathbf{p})-\lambda\right)}=\frac{\mathbf{1}}{\mu_{1}-\frac{\lambda}{1-\mathbf{p}}}=\frac{\mathbf{1}-\mathbf{p}}{\mu_{1}(\mathbf{1}-\mathbf{p})-\lambda}
$$

T = Avg. time in the queue considering the feedback also

$$
=\frac{\mathbf{N}_{1}}{\lambda}=\frac{1}{\mu_{1}(1-\mathbf{p})-\lambda}
$$

Solving open networks

Clerk 2
\square FCFS queue with exp. dist. service

$$
\begin{aligned}
& \mu_{1}=\frac{1}{20 \mathrm{sec}}, \mu_{2}=\frac{1}{10 \mathrm{~min}}=\frac{1}{600 \mathrm{sec}} \\
& \mu_{3}=\frac{1}{5 \mathrm{~min}}=\frac{1}{300 \mathrm{sec}}, \mu_{4}=\frac{1}{1 \mathrm{~min}}=\frac{1}{60 \mathrm{sec}}
\end{aligned}
$$

Solving open networks

$$
\begin{aligned}
& \lambda_{1}=\lambda, \rho_{1}=\frac{\lambda}{\mu_{1}}=20 \lambda \\
& \lambda_{2}=0.3 \lambda+0.1 \lambda_{3} \quad \lambda_{2}=0.38 \lambda, \rho_{2}=\frac{0.38 \lambda}{\frac{1}{600}}=228 \lambda \\
& \lambda_{3}=0.7 \lambda+0.2 \lambda_{2} \int \lambda_{3}=0.78 \lambda, \rho_{3}=\frac{0.78 \lambda}{\frac{1}{300}}=234 \lambda \\
& \lambda_{4}=0.8 \lambda_{2}+0.9 \lambda_{3}=\lambda, \rho_{4}=\frac{\lambda}{\frac{1}{60}}=60 \lambda
\end{aligned}
$$

Solving open networks

$$
\begin{aligned}
& \rho_{\mathrm{n}}<1 \rightarrow \lambda<\frac{1}{234}<15.38 / \text { hour } \\
& \pi_{n_{1} n_{2} n_{3} n_{4}}=\left(1-\rho_{1}\right) \rho_{1}^{n_{1}}\left(1-\rho_{2}\right) \rho_{2}^{n_{2}}\left(1-\rho_{3}\right) \rho_{3}^{n_{3}}\left(1-\rho_{4}\right) \rho_{4}^{n_{4}}
\end{aligned}
$$

$E\left[n_{1}\right]=\frac{\rho_{1}}{1-\rho_{1}}=\frac{20 \lambda}{1-20 \lambda} \leq 0.093$ for $\lambda \leq 0.00427 / \mathrm{sec}$

$$
E\left[n_{2}\right]=\frac{\rho_{2}}{1-\rho_{2}}=\frac{228 \lambda}{1-228 \lambda} \leq 36.82
$$

Solving open networks

$$
\begin{aligned}
& E\left[n_{3}\right]=\frac{\rho_{3}}{1-\rho_{3}}=\frac{234 \lambda}{1-234 \lambda} \leq \infty \\
& E\left[n_{4}\right]=\frac{\rho_{4}}{1-\rho_{4}}=\frac{60 \lambda}{1-60 \lambda} \leq 0.34 \quad N=\sum_{j=1}^{4} E\left[n_{j}\right]
\end{aligned}
$$

\square Avg. time to process,

$$
T=\frac{N}{\lambda} \quad(=23 \min \text { for } \lambda=10 / \text { hour })
$$

\square Avg. time to visit queue 1,3, and then 4,

$$
\mathrm{T}_{\mathrm{R}}=\frac{\mathbf{E}\left[\mathbf{n}_{1}\right]}{\lambda_{1}}+\frac{\mathbf{E}\left[\mathbf{n}_{3}\right]}{\lambda_{3}}+\frac{\mathbf{E}\left[\mathbf{n}_{4}\right]}{\lambda_{4}}
$$

Solving closed networks

\square Need utilization and normalization constant (sum of all combination of utilization)
\square Use relative utilization

- $r_{m}=u_{m} \mu_{m}=\alpha \lambda_{m}$
\square Normalization constant (with N customers in the network)

Solving closed networks

\square Prob. that queue-m has n or more customers
$\square \mathrm{P}\left[\mathrm{n}_{\mathrm{m}} \geq \mathrm{n}\right]=\mathbf{u}_{\mathrm{m}}^{\mathrm{n}} \frac{\mathbf{G}(\mathbf{N}-\mathbf{n})}{\mathbf{G}(\mathbf{N})}$
(n customers are already in queue- m, while the remaining ($N-n$) are \qquad)
\square Solution involves
\square Relative utility (u_{m})
\square Relative throughput (r_{m})

- Normalization constant (G(N))

Solving closed networks

$\square \mathbf{r}_{\mathrm{m}}=\mathbf{u}_{\mathrm{m}} \mu_{\mathrm{m}}=\alpha \lambda_{\mathrm{m}}$
$\square \alpha$: scalar required to change relative to absolute
$\square \rho_{m}=u_{m} \frac{G(N-1)}{G(N)} \quad \lambda_{m}=r_{m} \frac{G(N-1)}{G(N)}=\mu_{m} u_{m} \frac{G(N-1)}{\mathbf{G}(\mathbf{N})}$
$\mathbf{E}[\mathbf{n}]=\sum_{\mathrm{n}=1}^{\infty} \mathbf{n P [n]}=\sum_{\mathrm{n}=1}^{\infty} \sum_{k=\mathrm{n}}^{\infty} \mathbf{P}[k]=\sum_{\mathrm{n}=1}^{\infty} \mathbf{P}[k \geq \mathbf{n}]$
$\mathbf{E}\left[\mathbf{n}_{\mathrm{m}}\right]=\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathbf{u}_{\mathrm{m}}^{\mathrm{n}} \frac{\mathbf{G}(\mathbf{N}-\mathbf{n})}{\mathbf{G}(\mathbf{N})}$

Generating the normalization constant

\square Generating the normalization constant - (Convolution method)

- By Buzen
\square Partial sum including the terms for $\mathrm{n} \leq \mathrm{N}$ customers in $\mathrm{m} \leq \mathrm{M}$ of the queues

$$
\begin{aligned}
& \mathbf{g}(\mathbf{n}, \mathbf{m})=\sum_{\sum_{i=1}^{m} n_{i} n_{i}=n} \prod_{i=1}^{m} \mathbf{u}_{i}^{n_{i}} \\
& =\left(\mathbf{u}_{1}^{\mathrm{n}}+\mathbf{u}_{1}^{\mathrm{n}-1} \mathbf{u}_{2}+\ldots+\mathbf{u}_{1}^{\mathrm{n}-1} \mathbf{u}_{\mathrm{m}}+\mathbf{u}_{1}^{\mathrm{n}-2} \mathbf{u}_{2}^{2}+\ldots+\mathbf{u}_{\mathrm{m}}^{\mathrm{n}}\right) \\
& \mathbf{g}(\mathbf{n}-1, \mathbf{m})=\left(\mathbf{u}_{1}^{\mathrm{n}-1}+\mathbf{u}_{1}^{\mathrm{n}-2} \mathbf{u}_{2}+\ldots+\mathbf{u}_{1}^{\mathrm{n}-2} \mathbf{u}_{\mathrm{m}}+\mathbf{u}_{1}^{\mathrm{n}-3} \mathbf{u}_{2}^{2}+\ldots+\mathbf{u}_{\mathrm{m}}^{\mathrm{n}-1}\right) \\
& \mathbf{g}(\mathbf{n}, \mathbf{m}-1)=\left(\mathbf{u}_{1}^{\mathrm{n}}+\mathbf{u}_{1}^{\mathrm{n}-1} \mathbf{u}_{2}+\ldots+\mathbf{u}_{1}^{\mathrm{n}-1} \mathbf{u}_{\mathrm{m}-1}+\mathbf{u}_{1}^{\mathrm{n}-2} \mathbf{u}_{2}^{2}+\ldots+\mathbf{u}_{\mathrm{m}-1}^{\mathrm{n}-1}\right) \\
& g(n, m)=g(n, m-1)+u_{m} g(n-1, m) \\
& \mathbf{g}(\mathbf{n}, \mathbf{0})=\mathbf{0}, \mathbf{g}(\mathbf{0}, \mathrm{m})=\mathbf{1}, \mathbf{g}(\mathbf{n}, \mathbf{1})=\mathbf{u}_{\mathbf{1}}{ }^{\mathbf{n}}, \mathbf{G}(\mathbf{N})=\mathbf{g}(\mathbf{N}, \mathbf{M})
\end{aligned}
$$

Generating the normalization constant

n\m	0		1	2				m				M
0	0		1	1	-		-	1	-		.	1
1	0		g(1,1)	$\mathrm{g}(1,2)$	-	-		g(1,m)	-		-	G(1)
2	0		$\mathrm{g}(2,1)$	$\mathrm{g}(2,2)$	-	-	-	g(2,m)	-	-	-	G(2)
.												
-												
-												
n	0		g(n,1)	$\mathrm{g}(\mathrm{n}, 2)$	-	-	-	g(n,m)	-		-	G(n)
.												
-												
-												
N	0		$\mathrm{g}(\mathrm{N}, 1)$	$\mathrm{g}(\mathrm{N}, 2)$.	-	.	$\mathbf{g}(\mathbf{N}, \mathrm{m})$.	.	.	G(N)

$$
(\mathrm{ex}) g(2,2)=g(2,1)+u_{2} g(1,2)
$$

Generating the normalization constant

$\square(e x)$

Queue-1: processor

Queue-2: 5.25' HD

Queue-3: 8' HD
$28 \mathrm{msec} \quad \mu_{1}=\frac{1}{0.028 \mathrm{sec}}$
$40 \mathrm{msec} \quad \mu_{2}=\frac{1}{0.04 \mathrm{sec}}$
$280 \mathrm{msec} \mu_{3}=\frac{1}{0.28 \mathrm{sec}}$

$$
\begin{array}{ll}
\mu_{2} \mathbf{u}_{2}=0.7 \mu_{1} \mathbf{u}_{1} & \mu_{3} u_{3}=0.2 \mu_{1} \mathbf{u}_{1} \\
\frac{1}{40} \mathbf{u}_{2}=0.7 \frac{1}{28} \mathbf{u}_{1} & \frac{1}{280} \mathbf{u}_{3}=0.2 \frac{1}{28} \mathbf{u}_{1} \\
\mathbf{u}_{2}=\mathbf{u}_{1} & \mathbf{u}_{3}=2 \mathbf{u}_{1}
\end{array}
$$

Generating the normalization constant

$\square \mathbf{g}(\mathbf{n}, \mathrm{m})=\mathbf{g}(\mathbf{n}, \mathbf{m}-1)+\mathbf{u}_{\mathrm{m}} \mathbf{g}(\mathbf{n}-\mathbf{1}, \mathbf{m})$

$$
\mathbf{u}_{1} \rightarrow 1 ; \mathbf{u}_{2}=\mathbf{u}_{1}=1 ; \mathbf{u}_{3}=2 \mathbf{u}_{1}=2
$$

$\mathbf{n} \backslash \mathrm{m}$	0	1	2	3
0	0	1	1	$1=\mathbf{G}(0)$
1	0	1	2	4
2	0	1	3	11
3	0	1	4	26
4	0	1	5	57
5	0	1	6	120
6	0	1	7	247
7	0	1	8	$502=\mathbf{G (7)}$

$$
\begin{aligned}
& \mathrm{g}(1,1)=0+\mathrm{u}_{1} * 1=\mathrm{u}_{1}=1 \\
& \mathrm{~g}(1,2)=\mathrm{u}_{1}+\mathrm{u}_{2} * 1=2 \mathrm{u}_{1}=2 \\
& \mathrm{~g}(1,3)=\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3} * 1=4 \mathrm{u}_{1}=4 \\
& \mathrm{~g}(2,1)=0+\mathrm{u}_{1} * 1=1 \\
& \mathrm{~g}(2,2)=1+\mathrm{u}_{2} * 2=3 \\
& \mathrm{~g}(2,3)=3+\mathrm{u}_{3} * 4=11 \\
& \mathrm{~g}(3,1)=0+\mathrm{u}_{1} * 1=1 \\
& \mathrm{~g}(3,2)=1+\mathrm{u}_{2}^{*} * 3=4 \\
& \mathrm{~g}(3,3)=4+\mathrm{u}_{3} * 11=26
\end{aligned}
$$

Generating the normalization constant

$$
\begin{aligned}
& \mathrm{N}=7 \\
& \rho_{1}=u_{1} \frac{G(6)}{G(7)}=1 * \frac{\mathbf{2 4 7}}{\mathbf{5 0 2}}=0.492, \rho_{2}=\rho_{1}, \rho_{3}=u_{3} \frac{\mathbf{2 4 7}}{502}=0.984 \\
& \lambda_{1}=\rho_{1} \mu_{1}=0.492 * \frac{1}{0.028}=17.57 / \mathrm{sec} \\
& \lambda_{2}=12.3 / \mathrm{sec}, \lambda_{3}=3.51 / \mathrm{sec} \\
& \mathbf{E}\left[\mathrm{n}_{\mathrm{m}}\right]=\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathbf{u}_{\mathrm{m}}^{\mathrm{n}} \frac{\mathbf{G (N - n)}}{\mathbf{G (N)}}, \mathbf{u}_{1}^{\mathrm{n}}=\mathbf{1} \\
& E\left[n_{1}\right]=E\left[n_{2}\right]=\frac{1+4+\ldots+247}{502}=0.928 \\
& E\left[n_{3}\right]=\frac{\mathbf{2}^{7} \times 1+2^{6} \times 4+\bullet \bullet \bullet 2^{1} \times 247}{502}=5.143 \\
& T_{1}=\frac{E\left[n_{1}\right]}{\lambda_{1}}=\frac{0.928}{17.57}=0.0528 \mathrm{sec}, T_{2}=\frac{\mathrm{E}\left[\mathrm{n}_{2}\right]}{\lambda_{2}}=0.0755, \\
& \mathrm{~T}_{3}=1.465 \\
& \pi_{\mathrm{n} 1, \mathrm{n} 2,7-\mathrm{n} 1-\mathrm{n} 2}=(1 / 502) \mathbf{1}^{\mathrm{n} 1} 1^{\mathrm{n} 2} \mathbf{2}^{7-\mathrm{n} 1-\mathrm{n} 2}
\end{aligned}
$$

Generating the normalization constant

\square (Ex 7.3) What is the utilization of queue- 1 with 4 customers?

$$
\rho_{1}=u_{1}\left(G(3) / G\left(__{-}\right)\right)=1 \times 26 / 57=0.456
$$

\square (Ex 7.4) What is the utilization of queue- 3 with 4 customers?

$$
\rho_{3}=\ldots(G(3) / G(4))=2 \times 26 / 57=0.912
$$

\square (Ex 7.5) What is the normalization constant with 8 customers?

7	1	8	502

$8 \quad 1 \quad 9 \quad=1013$
\square (Ex 7.6) What is the utilization of queue- 1 with 8 customers?

$$
\rho_{1}=u_{1}(G(-) / G(8))=1 \times 502 / 1013=0.496
$$

\square What is the prob. for queue- 1 to have six or more customers with 7 customers in the network?

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}\left[\mathrm{n}_{1} \geq 6\right]=\ldots & (\mathrm{G}(1) / \mathrm{G}(7))= \\
\mathrm{P}\left[\mathrm{n}_{1} \geq 6\right]=\pi_{610}+\pi_{601}+\ldots & =\left(1^{6} 1^{1} 2^{0}+1^{6} 1^{0} 2^{1}+1^{7} 1^{0} 2^{0}\right) / 502=4 / 502 \\
& \left(=1^{6}\left(1^{0} 1^{1} 2^{0}+1^{0} 1^{0} 2^{1}+1^{1} 1^{0} 2^{0}\right) / 502\right. \\
& \left.=u_{1}^{6}(\mathrm{G}(1) / \mathrm{G}(7))\right)
\end{aligned}
\end{aligned}
$$

Mean Value Analysis (MVA)

\square The normalization constant method may cause overflow or underflow when automated

$$
\rho_{m}=\mathbf{u}_{\mathrm{m}}(\mathbf{G}(\mathbf{N}-1) / \mathbf{G}(\mathbf{N})) \text {; if } \rho_{\mathrm{m}}>\mathbf{u}_{\mathrm{m}}, \mathbf{G}(\mathbf{N}) \text { gets very ___ ; if } \rho_{\mathrm{m}}<\mathbf{u}_{\mathrm{m}} \text {, very large }
$$

\square One solution is scaling the relative utilization
\square MVA avoids the problem by computing averages. It also computes system parameters for all populations less than the target level as well
\square But it cannot provide specific prob. dist. :
$\mathbf{P}\left[\mathbf{n}_{\mathrm{m}} \geq \mathbf{n}\right]=\mathrm{u}_{\mathrm{m}}^{\mathrm{m}} \frac{\mathbf{G}(\mathbf{N}-\mathrm{n})}{\mathbf{G}(\mathbf{N})}$
\square Little's law is applied to each queue and network as a whole.

The MV theorem

\square The MV theorem (by Lavenberg and Reiser)
"A customer arriving at a queue sees the same dist. of customers as does an observer outside of the network if one less customer was circulating." (since itself needs to be \qquad)
(Good for product form NWs, approximation for others)

MVA procedure

\square For n := 1 to N
(* Iterate through NW population to target, \mathbf{N}^{*})

Form := 1 to M
(* Iterate through all queues *)
(average

time)
$\mathrm{T}_{\mathrm{m}}=$ (* Application of MV theorem *)
$\mathbf{n}_{\mathrm{m}}(\mathbf{0})=0 \quad$ (just \qquad
$\lambda=\frac{\mathbf{n}}{\sum_{m=1}^{M} \mathbf{T}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}}$
$\lambda_{m}=\lambda \mathbf{V}_{\mathrm{m}}$
$\mathbf{n}_{\mathrm{m}}(\mathbf{n})=\lambda_{\mathrm{m}} \mathbf{T}_{\mathrm{m}}$

MVA procedure

\square (ex) same example as for the convolution method

$$
\mathrm{n}=1
$$

$$
\mathbf{n}_{\mathrm{m}}(0)=0, \mathrm{~T}_{1}=0.028\{1+0\}=0.028 \mathrm{sec}
$$

$$
T_{2}=0.04, T_{3}=0.28
$$

$$
\lambda=\frac{\mathrm{n}}{\sum_{\mathrm{m}=1}^{\mathrm{M}} \mathrm{~T}_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}}}=\frac{1}{0.028+0.04 * 0.7+0.28 * 0.2}=\frac{1}{0.112}=8.93 / \mathrm{sec}
$$

$$
\lambda_{m}=\lambda V_{m} ; \lambda_{1}=8.93, \lambda_{2}=6.25, \lambda_{3}=1.786
$$

$$
\mathbf{n}_{\mathrm{m}}(\mathbf{n})=\lambda_{\mathrm{m}} \mathbf{T}_{\mathrm{m}}
$$

$$
n_{1}(1)=0.25, n_{2}(1)=0.25, n_{3}(1)=0.5
$$

$\mathrm{n} \backslash \mathrm{m}$	0	1	2	3
0	0	1	1	$1=\mathrm{G}(0)$
1	0	1	2	4
2	0	1	3	11
3	0	1	4	26
4	0	1	5	57
5	0	1	6	120
6	0	1	7	247
7	0	1	8	$502=\mathbf{G}(7)$

(From convolution, $\pi_{100}=(1 / 4) 1^{1} 1^{0} 2^{0}=0.25 ; \pi_{010}=(1 / 4) 1^{0} 1^{1} 2^{0}=0.25 ; \pi_{001}=(1 / 4)$ \qquad $=0.5$)

MVA procedure

$$
\begin{aligned}
& \mathrm{n}=2 ; \\
& \mathrm{T}_{1}=0.28\{1+0.25\}=0.035 \mathrm{sec} \\
& \mathrm{~T}_{2}=0.05, \mathrm{~T}_{3}=0.42 \\
& \lambda=\frac{\mathrm{n}}{\sum_{\mathrm{m}=1}^{\mathrm{M}} \mathrm{~T}_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}}}=\frac{2}{0.035+0.035+0.084}=\frac{2}{0.154}=12.99 / \mathrm{sec} \\
& \lambda_{m}=\lambda V_{m} ; \lambda_{1}=12.99, \lambda_{2}=9.09, \lambda_{3}=2.60 \\
& n_{1}(2)=0.455, n_{2}(2)=0.455, n_{3}(2)=1.092
\end{aligned}
$$

$n \backslash m$	0	1	2	3
0	0	1	1	$1=\mathbf{G}(0)$
1	0	1	2	4
2	0	1	3	11
3	0	1	4	26
4	0	1	5	57
5	0	1	6	120
6	0	1	7	247
7	0	1	8	$502=\mathbf{G}(7)$

From convolution, $E\left[n_{1}\right]=\mathbf{u}_{1}{ }^{1}(\mathbf{G}(1) / G(2))+$ \qquad $=4 / 11+1 / 11=0.455$

MVA procedure

$$
\begin{aligned}
& \mathrm{n}=3 ; \\
& \mathrm{T}_{1}=0.028\{1+0.455\}=0.041 \mathrm{sec} \\
& \mathrm{~T}_{2}=0.058, \mathrm{~T}_{3}=0.586 \\
& \lambda=\frac{\mathrm{n}}{\sum_{\mathrm{m}=1}^{\mathrm{M}} \mathrm{~T}_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}}}=\frac{3}{0.041+0.041+0.117}=\frac{3}{0.199}=15.1 / \mathrm{sec} \\
& \lambda_{\mathrm{m}}=\lambda \mathrm{V}_{\mathrm{m}} ; \\
& \lambda_{1}=15.11, \lambda_{2}=10.6, \lambda_{3}=3.02 \\
& \mathbf{n}_{1}(3)=0.615, n_{2}(3)=0.615, n_{3}(3)=1.77
\end{aligned}
$$

Verification with convolution method

$$
\begin{aligned}
& \rho_{1}=\frac{\lambda_{1}}{\mu_{1}}=\frac{15.11}{\frac{1}{0.028}}=0.423 \\
& \rho_{1}=u_{1} \frac{G(2)}{G(3)}=1 * \frac{11}{26}=0.423
\end{aligned}
$$

