
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process

Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Mutex Locks

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the critical-section problem, whose solutions can be used to ensure the consistency of

shared data

 To present both software and hardware solutions of the critical-section problem

 To examine several classical process-synchronization problems

 To explore several tools that are used to solve process synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers.
We can do so by having an integer counter that keeps track of the number of full buffers. Initially,

counter is set to 0. It is incremented by the producer after it produces a new buffer and is decremented

by the consumer after it consumes a buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER SIZE) ;

/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

counter++;

} *(________ is the only shared data by the two processes, which is initialized to 0)

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

*

*

(____ condition: the situation where several proc access and manipulate shared data concurrently. The
final value of the shared data depends on which proc finishes last.)
(To prevent race condition, concurrent proc must be synchronized. If the 3 inst of the producer and
consumer proc are executed as a group w/o interrupt (______ execution), correct result is guaranteed.)

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1} *

 Each process has critical section segment of code

 Process may be changing common variables, updating table, writing file, etc

 When one process in critical section, no other may be in its critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in entry section, may follow critical section with exit

section, then remainder section

(n processes all competing to use some shared data)

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process pi is

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be

executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter

their critical section, then the selection of the processes that will enter the critical section next cannot be

postponed indefinitely *

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter

their critical sections after a process has made a request to enter its critical section and before that

request is granted *

� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the n processes

*

 Two approaches depending on if kernel is preemptive or non-preemptive

 Preemptive – allows preemption of process when running in kernel mode

 Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU

Essentially free of race conditions in kernel mode

(Must satisfy all the 3 conditions)

(related to __________)

(related to __________)

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem

 Two process solution

 Assume that the load and store instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section

 The flag array is used to indicate if a process is ready to enter the critical section. flag[i] =
true implies that process Pi is ready!

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

do { *

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

 Provable that

1. Mutual exclusion is preserved

2. Progress requirement is satisfied *

3. Bounded-waiting requirement is met *

Algorithm for Process Pi

P0 P1

f(0)=1 f(1)=1
turn=0 (occurs first)

turn=1

CS
f(1)=__

CS
f(0)=0

(‘ ____’ decides which will go ahead if both want to go)

(As soon as f(1) becomes __, P0 can enter the CS.
So, waiting time is bounded (actually 1))

0

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

*

 All solutions below based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts *

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

*

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words

(Sync HW makes programming _______ and improves system efficiency)

(to allow correct sequence of execution while a shared variable is being modified)

(Since it needs to disable the int of other processors by sending msg to them which is time consuming)

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

do {

acquire lock *

critical section

release lock

remainder section

} while (TRUE);

Solution to Critical-section Problem Using Locks

(Once ‘lock’ becomes _____, other processes cannot enter the CS)

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

 Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target; *

*target = TRUE;

return rv:

}

*

*

(‘rv’ gets the current value of target)

(Read-modify-write inst)
(Test&Set (most CPU): read value, write back to mem)

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared boolean variable lock, initialized to FALSE

 Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

*

(TS = 0 means no one is in the CS)

(lock= 1 means CS is (will be) used by someone)

TS=0
lock=1

TS=1
lock=1

CS
lock=0

TS=0
lock=1
CS
lock=0

P0 P1

(Bounded waiting is not satisfied when more than two proc operate since TS
inst is atomic. For a proc, it cannot be ever executed if the TS inst of other
proc is always executed before itself.)

boolean test_and_set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

 Definition:

int compare and swap(int *value, int expected, int new value) {

int temp = *value;

if (*value == expected)

*value = new value;

return temp;

}

*

(Compare and swap (68000): read value, if it matches reg, do exchange)

(Exchange (intel 80x86): swap values between reg & mem)

(Load-link/store-conditional (LL/SC) (R4000, Alpha)
- Designed to fit better with load/store arch (speculative computation)
- Read value. Do some operation. When store, check if modified. If not, Ok.
Otherwise, abort, jump back to start)

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using compare_and_swap

 Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key

 Solution:

do {
while (compare and swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

P0 P1

CS()=0
lock=1

CS()=1
lock=1

CS
lock=0

CS()=0
lock=1
CS
lock=0

int compare and swap(int *value, int expected, int new value) {

int temp = *value;

if (*value == expected)

*value = new value;

return temp;

}

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false; *

else

waiting[j] = false;

/* remainder section */

} while (true);

(If ‘lock’ was _____ , key becomes false due to swap inst.
Then comes out from while loop and enters CS. If other
proc comes, key and lock are true, and thus keep swapping
until lock becomes false)

boolean test_and_set (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible to application
programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

 Product critical regions with it by first acquire() a lock then release() it

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

acquire() {
while (!available)

; /* busy wait */

available = false;;

}

release() {

available = true;

}

do {

acquire lock

critical section

release lock

remainder section

} while (true);

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore *

 Synchronization tool that does not require busy waiting *

 Semaphore S – integer variable *

 Two standard operations modify S: wait() and signal() *

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

wait (S) {

while (S <= 0)

; // busy wait *

S--;

}

signal (S) {

S++;

}

*

(Sync HW is not easy to generalize for complex problem)

(Main sync primitive in original UNIX)

(initially 1)

(atomic operation)

(By Dijkstra late ’60s)

(For the first visitor, S=1  S=0, enter CS. Other visitors no-op until S=1)

(Still busy waiting (____ _____). It is solved by using block/wake up mechanism)

5.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Then a mutex lock

 Can implement a counting semaphore S as a binary semaphore

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

P1:

S1;

signal(synch);

P2:

wait(synch) ;

S2;

5.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the same semaphore at

the same time

 Thus, implementation becomes the critical section problem where the wait and signal code are placed in

the critical section

 Could now have busy waiting in critical section implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and therefore this is not a good solution

*

*

(Spin lock is useful when context switching takes time)

(Spin lock is a problem with multiprogramming since CPU time is wasted)

5.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation

with no Busy waiting

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the appropriate waiting queue

 wakeup – remove one of processes in the waiting queue and place it in the ready queue

5.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Implementation with

no Busy waiting (Cont.)

typedef struct{

int value; * *

struct process *list;

} semaphore;

wait(semaphore *S) {

S->value--;

if (S->value < 0) {
add this process to S->list;

block();

}

} *

signal(semaphore *S) { *

S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}

}

(no. of processes waiting, initially 1)

(Solution)
Uniprocessor: Inhibit int during wait and signal

(Wait and Signal can’t be executed simultaneously)

Multiprocessor: enclose wait and signal with critical section.
This still causes busy waiting to enter the CS containing wait or
signal. However, the time to spent to execute wait or signal is
short, and thus not long busy waiting

P0 P1

S=0
CS

S=-1
block(P1)

S=0
wakeup(P1)

CS
S=1

5.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of
the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. .

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking *

 A process may never be removed from the semaphore queue in which it is suspended

 Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-
priority process

 Solved via priority-inheritance protocol

(occurs if LIFO is used)

(S=0) (Q=0)

(Q=−1; block) (S=−1; block)

5.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

5.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

*

 Semaphore empty initialized to the value n

*

(number of filled entries)

(number of empty entries)

5.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

...
/* produce an item in next_produced */ *

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

P0 P1

e=n−1
m=0 e=n−2
add m=−1, blocked

m=0, wake P1

f= 1 add
m=1
f=2

5.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

* (Assume f = 1)

P0 P1

f=0
m=0 f=−1, blocked
consume

m=1, wake P1

e= n

5.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are treated – all involve priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

5.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

do {
wait(rw mutex);

...
/* writing is performed */

...

signal(rw mutex); *

} while (true);
(After signal(rw), the scheduler decides either waiting readers or single
waiting writer among possibly many waiting writers)

5.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process

*

 do {

wait(mutex);

read count++;

if (read count == 1)

wait(rw mutex);

signal(mutex);

/* reading is performed */

wait(mutex);

read count--;

if (read count == 0)

signal(rw mutex); *

signal(mutex);

} while (true); *

R0 R1 R2

m=0
r=1 m=−1, block

rw=0;

m=0, wake(R1)
read

r=2
m=1
read

m=0
r =1
m=1

m=0
r=0
rw=1
m=1

(If a writer is in CS and n readers are waiting, the first reader hangs on
wait(___) while the subsequent readers are on wait(_____))

(for protecting
___________)

(last exiting reader opens _______)

5.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has permission to use shared object

*

 Second variation – once writer is ready, it performs write asap

*

 Both may have starvation leading to even more variations

 Problem is solved on some systems by kernel providing reader-writer locks

(Assume that Reader-A is reading while Writer-B is waiting, and then Reader-C and D arrive)

(No reader waits for other reader to finish even though a writer is waiting
 causes _________ starvation)

(If a writer is waiting, no reader may start reading  causes ________ starvation)

*

5.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat

from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

(Typical concurrency control problem and resource allocation problem)

5.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm? *

*

*

(Deadlock when everyone picks up the left one at the same time)

((Sol)
- put at most __ people
-Allow to pick up chopsticks only when ____ are available (does that in CS)
- Odd position person picks left first while even position person does _____ first))

(Deadlock-free does not guarantee no starvation)

*

0

4

3 2

1

5.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex) *

 wait (mutex) … wait (mutex) *

 Omitting of wait (mutex) or signal (mutex) (or both)

* *

 Deadlock and starvation

(Several entrances (so no mutex))

(Deadlock)

(_________) (_________)

5.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

 Abstract data type, internal variables only accessible by code within the procedure

 Only one process may be active within the monitor at a time

 But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. } *

procedure Pn (…) {……}

Initialization code (…) { … }

}

}

(Semaphore is for both ______ and __________. So, hard to read & write)

(The procedures can use only the _____ variables within the monitor)

5.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schematic view of a Monitor

5.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

 condition x, y; *

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is suspended until x.signal ()

 x.signal () – resumes one of processes (if any) that invoked x.wait ()

 If no x.wait () on the variable, then it has no effect on the variable

*

(use LOCKs for mutex and CONDITION VARIABLES for scheduling)

(x.broadcast() is also supported for waking up all waiters)

5.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

5.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables Choices

 If process P invokes x.signal (), with Q in x.wait () state, what should happen next?

 If Q is resumed, then P must wait

 Options include

 Signal and wait – P waits until Q leaves monitor or waits for another condition

 Signal and continue – Q waits until P leaves the monitor or waits for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is resumed

 Implemented in other languages including Mesa, C#, Java

5.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers

monitor DiningPhilosophers

{ *

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5]; *

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

} *

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5); *

test((i + 1) % 5);

}

(State eating: only when two neighboring people are not _______)

(Self[] is condition variable used for scheduling)

(true if at least one neighbor is ______)

(for making ____ person eat first if the person wants)

5.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

} *

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

(test[]: if left and right person do not eat and itself is _______ , makes its state eating and executes self[i].signal)

5.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Each philosopher i invokes the operations pickup() and putdown() in the following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation Using Semaphores

 Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next_count > 0)

signal(next)
else

signal(mutex);

 Mutual exclusion within a monitor is ensured

* (A proc must execute wait(mutex) before entering the monitor, siganl(mutex) after leaving the monitor)

5.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

 The operation x.wait can be implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;

5.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

5.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal() executed, which should be resumed?

 FCFS frequently not adequate

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is scheduled next

5.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

5.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads

5.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading (including real-time threads), and

multiprocessing

*

 Uses adaptive mutexes for efficiency when protecting data from short code segments

 Starts as a standard semaphore spin-lock *

 If lock held, and by a thread running on another CPU, spins *

 If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

 Uses condition variables

 Uses readers-writers locks when longer sections of code need access to data

*

 Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer

lock

 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of the priorities of the threads in its

turnstile

(SunOS uses CS with highest int level (so not interruptible))

(since it will be available soon)

(≤ ___’s insts)

(better than semaphore since it allows multiple thr to access data simultaneously)

(queue containing thr blocked on a lock)

5.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Windows XP Synchronization

 Uses interrupt masks to protect access to global resources on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act mutexes, semaphores, events, and timers

 Events

 An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object available) or non-signaled state (thread will block)

*(Notify a waiting thr when a desired condition occurs)

5.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 semaphores

 spinlocks

 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and disabling kernel preemption

(so nonpreemptive kernel)*

(holding spinlock ≡ ________ kernel preemption;

releasing spinlock ≡ enables kernel preemption)
*

5.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variables

 Non-portable extensions include:

 read-write locks

 spinlocks

5.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Atomic Transactions

 System Model

 Log-based Recovery

 Checkpoints

 Concurrent Atomic Transactions

5.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

 Assures that operations happen as a single logical unit of work, in its entirety, or not at all

 Related to field of database systems

 Challenge is assuring atomicity despite computer system failures

 Transaction - collection of instructions or operations that performs single logical function

 Here we are concerned with changes to stable storage – disk

 Transaction is series of read and write operations

 Terminated by commit (transaction successful) or abort (transaction failed) operation

 Aborted transaction must be rolled back to undo any changes it performed

5.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of Storage Media

 Volatile storage – information stored here does not survive system crashes

 Example: main memory, cache

 Nonvolatile storage – Information usually survives crashes

 Example: disk and tape

 Stable storage – Information never lost

 Not actually possible, so approximated via replication or RAID to devices with independent failure

modes

Goal is to assure transaction atomicity where failures cause loss of

information on volatile storage

5.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Log-Based Recovery

 Record to stable storage information about all modifications by a transaction

 Most common is write-ahead logging

 Log on stable storage, each log record describes single transaction write operation, including

 Transaction name

 Data item name

 Old value

 New value

 <Ti starts> written to log when transaction Ti starts

 <Ti commits> written when Ti commits

 Log entry must reach stable storage before operation on data occurs

5.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Log-Based Recovery Algorithm

 Using the log, system can handle any volatile memory errors

 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new values

 Undo(Ti) and redo(Ti) must be idempotent

 Multiple executions must have the same result as one execution

 If system fails, restore state of all updated data via log

 If log contains <Ti starts> without <Ti commits>, undo(Ti)

 If log contains <Ti starts> and <Ti commits>, redo(Ti)

5.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Checkpoints

 Log could become long, and recovery could take long

 Checkpoints shorten log and recovery time.

 Checkpoint scheme:

1. Output all log records currently in volatile storage to stable storage

2. Output all modified data from volatile to stable storage

3. Output a log record <checkpoint> to the log on stable storage

 Now recovery only includes Ti, such that Ti started executing before the most recent checkpoint, and all

transactions after Ti All other transactions already on stable storage

5.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrent Transactions

 Must be equivalent to serial execution – serializability

 Could perform all transactions in critical section

 Inefficient, too restrictive

 Concurrency-control algorithms provide serializability

5.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Serializability

 Consider two data items A and B

 Consider Transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order called serial schedule

 For N transactions, there are N! valid serial schedules

5.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedule 1: T0 then T1

5.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Nonserial Schedule

 Nonserial schedule allows overlapped execute

 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj

 Conflict if access same data item, with at least one write

 If Oi, Oj consecutive and operations of different transactions & Oi and Oj don’t conflict

 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting operations

 S is conflict serializable

5.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedule 2: Concurrent Serializable Schedule

5.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Locking Protocol

 Ensure serializability by associating lock with each data item

 Follow locking protocol for access control

 Locks

 Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q but not write Q

 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read and write Q

 Require every transaction on item Q acquire appropriate lock

 If lock already held, new request may have to wait

 Similar to readers-writers algorithm

5.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-phase Locking Protocol

 Generally ensures conflict serializability

 Each transaction issues lock and unlock requests in two phases

 Growing – obtaining locks

 Shrinking – releasing locks

 Does not prevent deadlock

5.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Timestamp-based Protocols

 Select order among transactions in advance – timestamp-ordering

 Transaction Ti associated with timestamp TS(Ti) before Ti starts

 TS(Ti) < TS(Tj) if Ti entered system before Tj

 TS can be generated from system clock or as logical counter incremented at each entry of transaction

 Timestamps determine serializability order

 If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where Ti appears

before Tj

5.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Timestamp-based Protocol Implementation

 Data item Q gets two timestamps

 W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully

 R-timestamp(Q) – largest timestamp of successful read(Q)

 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting read and write executed in timestamp order

 Suppose Ti executes read(Q)

 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was already overwritten

 read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)

 read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti))

5.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Timestamp-ordering Protocol

 Suppose Ti executes write(Q)

 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed previously and Ti assumed it would never be

produced

 Write operation rejected, Ti rolled back

 If TS(Ti) < W-timestamp(Q), Ti attempting to write obsolete value of Q

 Write operation rejected and Ti rolled back

 Otherwise, write executed

 Any rolled back transaction Ti is assigned new timestamp and restarted

 Algorithm ensures conflict serializability and freedom from deadlock

5.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedule Possible Under Timestamp Protocol

