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Chapter Objectives

To develop a description of deadlocks, which prevent sets of 

concurrent processes from completing their tasks

To present a number of different methods for preventing or avoiding 

deadlocks in a computer system



7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

System consists of resources

Resource types R1, R2, . . ., Rm *

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request *

use 

release  *

(Physical or logical)

(system call such as open & close file, allocate memory or 

wait & signal semaphore)

(Same as above)
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Deadlock Characterization

Mutual exclusion: only one process at a time can use a 

resource

Hold and wait: a process holding at least one resource is 

waiting to acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by 

the process holding it, after that process has completed its task

Circular wait: there exists a set {P0, P1, …, Pn} of waiting 

processes such that P0 is waiting for a resource that is held by P1, 

P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting 

for a resource that is held by Pn, and Pn is waiting for a resource 

that is held by P0.

*

Deadlock can arise if four conditions hold simultaneously.

(Circular wait is for just waiting without _______ )

( ________ 

condition)
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Deadlock with Mutex Locks

Deadlocks can occur via system calls, locking, etc

See example box in text page 313 for mutex deadlock
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Resource-Allocation Graph

V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes in 

the system

R = {R1, R2, …, Rm}, the set consisting of all resource types in 

the system

request edge – directed edge Pi → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock

(2 cycles: P1 → R1 → P2 → R3 → P3 → R2 → P1 ; P2 → R3 → P3 → R2 → P2)
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Graph With A Cycle But No Deadlock

(cycle: P1 → R1 → P3 → R2 → P1 ) (If P2 releases R1, then  it can be 

allocated  to P1 which eliminates 

he cycle. When P1 releases R2, __

can proceed.)

(If P4 releases R2, then  it can be 

allocated  to P3 which eliminates 

the cycle. When P3 releases R1, __

can proceed.)
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Basic Facts

If graph contains no cycles  no deadlock

If graph contains a cycle 

if only one instance per resource type, then deadlock

if several instances per resource type, possibility of deadlock
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Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state 

*

Allow the system to enter a deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in the 

system; used by most operating systems, including UNIX

*

*

(by prevention or _________ )

(Prevention: ensure at least one __________ condition cannot hold by constraining how 

request for resources can be made)
(Avoidance: OS is given in advance the information concerning which _________ a process 

will request and use during its lifetime)
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Deadlock Prevention

Mutual Exclusion – not required for sharable resources; must 

hold for nonsharable resources

Hold and Wait – must guarantee that whenever a process 

requests a resource, it does not hold any other resources

Require process to request and be allocated all its resources 

before it begins execution, or allow process to request 

resources only when the process has none

Low resource utilization; starvation possible

*

*

* 

Restrain the ways request can be made

(Ex)  Copy data from tape to disk, sort, and then send to printer 

(Solution 1) Acquire all three devices first. Use and then release (the printer is then idle 

most of time until the last stage)

(Solution 2) Acquire tape & disk, use and then release. Acquire disk & printer, use and 

then release. 
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Deadlock Prevention (Cont.)

No Preemption –

If a process that is holding some resources requests another 

resource that cannot be immediately allocated to it, then all 

resources currently being held are released

Preempted resources are added to the list of resources for which 

the process is waiting

Process will be restarted only when it can regain its old resources, 

as well as the new ones that it is requesting

*

Circular Wait – impose a total ordering of all resource types, and 

require that each process requests resources in an increasing order of 

enumeration

*

(Ex)  P0 needs one more resource RA to start, but they are now all allocated to P1 and P2.

(Solution 1)  Check if  an RA is allocated to a process waiting for other resource.  If P1 is waiting and P2 

is running, preempt RA from __ , and allocate it to P0. Start P0. 

(Solution 2) If P1 and P2 are running, P0 needs to ____ . During waiting, the resources allocated to P0

may be preempted if requested. 
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Deadlock Example

/* thread one runs in this function */ 

void *do work one(void *param)
{ 

pthread mutex lock(&first mutex); 

pthread mutex lock(&second mutex); 

/** * Do some work */

pthread mutex unlock(&second mutex); 

pthread mutex unlock(&first mutex); 

pthread exit(0); 

} 

/* thread two runs in this function */ 

void *do work two(void *param)
{ 

pthread mutex lock(&second mutex); 

pthread mutex lock(&first mutex); 

/** * Do some work */

pthread mutex unlock(&first mutex); 

pthread mutex unlock(&second mutex); 

pthread exit(0); 

} 

1

2

3

4

*
*

*

*
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Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount) 

{ 

mutex lock1, lock2; 

lock1 = get lock(from); 

lock2 = get lock(to); 

acquire(lock1); 

acquire(lock2); 

withdraw(from, amount); 

deposit(to, amount); 

release(lock2); 

release(lock1); 

} 

* (Deadlock if T0  executes transaction (A, B, 50) 

and T1  does transaction (B, A, 100) simultaneously)

T0:                     T1: 

. . .                   . . .

acquire(A);             acquire(B); 

acquire(B);             acquire(A); 

(*deadlock*)            (* deadlock*) 

. . .                   . . .

*
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Deadlock Avoidance

Simplest and most useful model requires that each process declare 

the maximum number of resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the 

resource-allocation state to ensure that there can never be a 

circular-wait condition

Resource-allocation state is defined by the number of available and 

allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information 

available
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Safe State

When a process requests an available resource, system must decide 

if immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of 

ALL the  processes  in the systems such that  for each Pi, the 

resources that Pi can still request can be satisfied by currently 

available resources + resources held by all the Pj, with j < i

That is:

If Pi resource needs are not immediately available, then Pi can 

wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute, 

return allocated resources, and terminate

When Pi terminates, Pi +1 can obtain its needed resources, and so 

on 
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Basic Facts

If a system is in safe state  no deadlocks

If a system is in unsafe state  possibility of deadlock

Avoidance  ensure that a system will never enter an unsafe state.
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Safe, Unsafe, Deadlock State 
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Avoidance algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

Use the banker’s algorithm
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Resource-Allocation Graph Scheme

Claim edge Pi → Rj indicated that process Pj may request resource 

Rj; represented by a dashed line

Claim edge converts to request edge when a process requests a 

resource

Request edge converted to an assignment edge when the  resource 

is allocated to the process

When a resource is released by a process, assignment edge 

reconverts to a claim edge

Resources must be claimed a priori in the system
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Resource-Allocation Graph

(The reason why no instance is drawn 

inside the box is that there is only one 

________ in it)
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Unsafe State In Resource-Allocation Graph

(P2 requests R2. If R2 is allocated to P2 , it will create a cycle. So, Pi→ Rj (request) is changed to Rj

→ Pi(allocation) in the resource allocation graph only if no _____ occurs.)

(It takes n2 times to detect a _____ when n is the number of processes.) 
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Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj

The request can be granted only if converting the request edge to an 

assignment edge does not result in the formation of a cycle in the 

resource allocation graph
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Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait  

When a process gets all its resources it must return them in a finite 

amount of time
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Data Structures for the Banker’s Algorithm 

Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at 

most k instances of resource type Rj

Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently 

allocated k instances of Rj

Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more 

instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 
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Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both: 

(a) Finish [i] = false

(b) Needi  Work * 

If no such i exists, go to step 4

3.  Work = Work + Allocationi *
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

*

(If true, we can allocate what Pi needs.) 

(Work now contains the item currently available and those already 

allocated that will be eventually released) 

(O(mn2)) 
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Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If Requesti [j] = k then 
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, 
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3.  Otherwise Pi must wait, 
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the 
state as follows:

Available = Available  – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi *

If unsafe  Pi must wait, and the old resource-allocation state 
is restored

(Checked using ______ algorithm) 
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Example of Banker’s Algorithm

5 processes P0  through P4; 

3 resource types:

A (10 instances),  B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available Need

A B C A B C A B C         A B C

P0 0 1 0 7 5 3 3 3 2 7  4  3

P1 2 0 0 3 2 2  1  2  2

P2 3 0 2 9 0 2 6  0  0

P3 2 1 1 2 2 2 0  1  1

P4 0 0 2 4 3 3  4  3  1

*  
(7  2  5) 

(Number of  instances – Allocation) 

(Max – Allocation) 

(Work= (3 _ 2)) → (P1(1 2 2) <  Work, so assign, finish, return resource) →

(P3(0 1 1) < Work) →

(Work= ( _ 3 2)) →

(Work= (7 4 3)) → (P4(4 3 1) < Work) →

(Work = (7 4 5)) → (Work = (10 4 7)) →(P2(6 0 0) < Work) →
(Work = (10 5 7)) after P0 is finished) ( Hence it is in ______ state now.)
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Example (Cont.)

The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1

P4 4 3 1 

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 

satisfies safety criteria
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Example:  P1 Request (1,0,2)

Check that Request  Available (that is, (1,0,2)  (3,3,2))  true)

Allocation Need(n) Available(n) Need(old) Available(n)

A B C A B C A B C      A B C         A B C

P0 0 1 0 7 4 3 2 3 0       7 4 3          3 3 2

P1 3 0 2* 0 2 0* 1 2 2

P2 3 0 2 6 0 0 6 0 0

P3 2 1 1 0 1 1 0 1 1

P4 0 0 2 4 3 1 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 

satisfies safety requirement *

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

((1,2,2)–

(1,0.2)) 

((2,0,0)+

(1,0,2)) 

(Work= (2 3 0)) →(P1 finish; Work = (5 3 2)) →
(P3 ; Work = (7 4 3)) → (P4 ; Work = (7 4 5)) →
(P0 ; Work = (7 5 5)) → (P2 ; Work = (10 5 7)) 

((3 3 0) < (4 3 1) ok. But no grant since (3 3 0) < (2 3 0) )

((0 2 0) < (7 4 3) ok. (0 2 0) < (2 3 0), and so far fine) →

(P0 Allocation = (0 3 0), Need (7 2 3); Work = (2 1 0) → (No sequence is found, and it is unsafe. Answer is NO)

Check that Request  Need (that is, (1,0,2)  (1,2,2))  true)
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Deadlock Detection

Allow system to enter deadlock state 

Detection algorithm *

Recovery scheme

(Overhead: maintaining necessary info & executing detection algo) 
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Single Instance of Each Resource Type

Maintain wait-for graph

Nodes are processes

Pi → Pj   if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the 

graph. If there is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph
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Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

(Deadlock exists iff the wait-for 

graph contains a cycle) 

((P1, P2, P3, P4), (P1, P2,P4)) 
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Several Instances of a Resource Type

Available: A vector of length m indicates the number of available 

resources of each type

Allocation: An n x m matrix defines the number of resources of 

each type currently allocated to each process

Request: An n x m matrix indicates the current request  of each 

process.  If Request [i][j] = k, then process Pi is requesting k more 

instances of resource type Rj.
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Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively 

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then 

Finish[i] = false; otherwise, Finish[i] = true

* 

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work *

If no such i exists, go to step 4

(Different from satety algorithm. Allocation = 0 means that the process is not in the wait-for graph.) 

(‘Request’ is ‘____’ in Banker’s algorithm) 
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Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system is in 
deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect 

whether the system is in deadlocked state
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Example of Detection Algorithm

Five processes P0 through P4; three resource types 

A (7 instances), B (2 instances), and C (6 instances)

Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0             0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3             0 0 0 

P3 2 1 1 1 0 0 

P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in

Finish[i] = true for all i  * 

A B C

0 1 2

043

04

201

3

(Cycle: (P1, P3) (P1, P4 , P3)) 

(Even with 2 cycles, no deadlock due to ________________ )

(7  2  6) 
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Example (Cont.)

P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0 

P4 0 0 2

*

State of system?

Can reclaim resources held by process P0, but insufficient 

resources to fulfill other processes’ requests

Deadlock exists, consisting of processes P1, P2, P3, and P4

A B C

0 1 2

043

04

201

3

(Additional cycles: (P1, P2, P4 , P3) (P1, P2 , P3) (P2, P3) (P2, P4)) 

Allocation

A B C    

0 1 0 

2 0 0

3 0 3 

2 1 1 

0 0 2 

(Work= (0 0 0)) → (P0 finish; Work = (0 1 0)) → (No way)



7.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection-Algorithm Usage

When, and how often, to invoke depends on:

How often a deadlock is likely to occur?

How many processes will need to be rolled back?

 one for each disjoint cycle

*

If detection algorithm is invoked arbitrarily, there may be many cycles 

in the resource graph and so we would not be able to tell which of the 

many deadlocked processes “caused” the deadlock.

*

(One approach  is to invoke the algo whenever a request cannot be granted. Then the set of proc 

that is deadlocked and the specific one causing the deadlock can be identified.) 

(Too much overhead for deadlock detection  → once per hour or when CPU utilization drops 

below   __%) 
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Recovery from Deadlock:  

Process Termination

Abort all deadlocked processes * 

Abort one process at a time until the deadlock cycle is eliminated

*

In which order should we choose to abort?

1. Priority of the process * 

2. How long process has computed, and how much longer to 

completion *

3. Resources the process has used *

4. Resources process needs to complete *

5. How many processes will need to be terminated *

6. Is process interactive or batch? *

(causes lost of ________ computation results) 

(causes overhead of deadlock detection for each abortion) 

( ___ ) 

(shorter, longer) 

( _____ use) 

( _____ need) 

(small) 

( _____ since it can be restarted from the beginning) 
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Recovery from Deadlock: 

Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, 

include number of rollback in cost factor


