Chapter 2: System Structures

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

»

ot Chapter 2: System Structures

A\

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

System Boot

Operating System Concepts — 9t Edition 2.2 Silberschatz, Galvin and Gagne ©2013

»

To describe the services an operating system provides to users,
processes, and other systems

To discuss the various ways of structuring an operating system

To explain how operating systems are installed and customized and
how they boot

3
W\}
f,/ﬁ..‘\x\‘
(
Dy

Operating System Concepts — 9t Edition 2.3 Silberschatz, Galvin and Gagne ©2013

A

By

-5 Operating System Services

Operating systems provide an environment for execution of programs and
services to programs and users

One set of operating-system services provides functions that are helpful to the
user:

User interface - Almost all operating systems have a user interface (Ul).

» Varies between Command-Line (CLI), Graphics User Interface (GUI),
» Batch
(UX:)
Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or

abnormally (indicating error)

I/0 operations - A running program may require |/O, which may involve a
file or an I/O device

File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

g 7
}g 9

“l

Operating System Concepts — 9t Edition 2.4 Silberschatz, Galvin and Gagne ©2013

AN

w Operating System Services (Cont.)

Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through
message passing (packets moved by the OS)

Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in I1/O devices, in
user program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

&
[y <
A }gv 3

Operating System Concepts — 9t Edition 2.5 Silberschatz, Galvin and Gagne ©2013

.
2

«
- m’u»_l

“»77 Operating System Services (Cont.)

ry

Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

Accounting - To keep track of which users use how much and what kinds
of computer resources

Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

> Protectiog(involves ensuring that all access to system resources is
controlled” (handles problem)

» Security of the system from outsiders requires user authentication,
e%(telafis to deJending e>3terna| I/O devices from invalid access attempts
anales outsiae

> I% a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

0 w(
R PV 3 3

Operating System Concepts — 9t Edition 2.6 Silberschatz, Galvin and Gagne ©2013

N

.
“$%7 A View of Operating System Services

k\)

user and other system programs

Gul batch command line

user interfaces

system calls

program
execution

11O
operations

file
systems

communication

resource
allocation

accounting

errar

protection

and

detection security

services

operating system

hardware

S e SN |
9. |

Operating System Concepts — 9t Edition 2.7 Silberschatz, Galvin and Gagne ©2013

4

g\"‘?f"f User Operating System Interface - CLI

*(2 ways of user interaction with OS: CLI and GULI@G complex but , GUl is)
CLI or command interpreter allows direct command entry

> Sometirrl(es implemented in kernel, sometimes by systems
program (XP, Unix)

» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it
Sometimes commands built-in, sometimes just names of

*
programs (Unix)
» If the latter, adding new features doesn'’t require shell
;nodification
(Disadv: passing parameter from to sypt®gram)

Operating System Concepts — 9t Edition 2.8 Silberschatz, Galvin and Gagne ©2013

¢
(default Unix shell of Unix Version 7, 1977; locdtat /bin/sh ;

shet» _ shell)

3

Bookmarks

»7/Bourne Shell Command Interpreter
Ne:? g C.\E{ ! Execute

PBG-Mac-Pro:~ pbg$ w

15:24 up 56 mins, 2 users, load averages: 1.51 1.53 1.65
USER ToY FROM LOGIN& IDLE WHAT
pbg console - 14:34 50 -
pbg s000 - 15:05 - W
PBG-Mac-Pro:~ pbg$ iostat 5
disk® diskl disk10 cpu load average
KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us sy id 1m 5S5m 15m
33.75 343 11.30 64.31 14 0.88 39.67 © ©0.02 11 5 84 1.51 1.53 1.65
5.27 320 1.65 0.00 © 0.00 0.00 © 0.0 4 294 1.39 1.51 1.65
4.28 329 1.37 .00 0 0.00 9.00 0 9.80 5 392 1.44 1.51 1.65
AC
PBG-Mac-Pro:~ pbg$ 1s
Applications Music WebEx
Applications (Parallels) Pando Packages config.log
Desktop Pictures getsmartdata. txt
Documents Public imp
Downloads Sites log
Dropbox Thumbs .db panda-dist
Library Virtual Machines prob. txt
Movies Volumes scripts
PBG-Mac-Pro:~ pbg$ pwd
/Users/pbg

PBG-Mac-Pro:~ pbg$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq-0 ttl-64 time=2.257 ms
64 bytes from 192.168.1.1: icmp_seq-1 ttl-64 time=1.262 ms
AC

--- 192.168.1.1 ping statistics ---

2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 1.262/1.760/2.257/0.498 ms
PBG-Mac-Pro:~ pbg$ []

Operating System Concepts — 9t Edition 29

A

S

' ,‘AW%.&
bl

“»”7 User Operating System Interface - GUI

User-friendly desktop metaphor interface
Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

*
Invented at Xerox PARC (Palo Alto Research Center, 1973; Mac | 1980s)

Many systems now include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath
and shells available

Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)(Common Desktop , a graphical desktggo Unix and openVMS

*(K Desktop Env; free SW project)
*(GNOME: GNU (GNU's Not Unix) Network Modeh®

WY B,
A%

Operating System Concepts — 9t Edition 2.10 Silberschatz, Galvin and Gagne ©2013

=

Y
| S\

o
o Touchscreen Interfaces

Touchscreen devices require new
interfaces

Mouse not possible or not desired

Actions and selection based on
gestures

Virtual keyboard for text entry

Operating System Concepts — 9th Edition 2.11 Silberschatz, Galvin and Gagne ©2013

The Mac OS X GUI

*(2001; C and ; hybrid on Mach microkernelQl¢heeta, 10.1 Puma,... Lion)

.

@ Grab File Edit [ERRE wWindow Help . By = S W @ F =D S A) 15:06EDT Man 2 Jul

269
apno [Rg-dir = :
=) |: l:l Cl |: e 2@ :‘ = o o + B @ Q- selection Ll

#t~ Fauorites» Documents= [usic= Moviss= Picturss= Detktons Apolications= ZFEG= ZPAGE~ iDisk~

207-06310ungrsde |) Deskiop. @ Comouter [y
iy

®) ZP9C 3 imo) beck) wsBdie 3 My

Knd Dire Madified Size Apglication
FOF E/24/07, 10374 106 1KE Skm
td =/18/07, 553PM TTRR lakscape
Fortal e Netaark Crazhics Image Tod . T05PM 392HE Fredme

i
G Teday, 1:05PM £ 3KE Inkscape <
TIFF Toui: M BRI IKE Fredme P

hz-1.05a pd-
h3-10%a s
F3-2.0 pag
hz-205m
bg-Ziia

9 Nerwark.

2 Freedam Steipe

Z\ Macintash HD

2 Unzitled

i Unzitled 2

) ZPRG

) ZPRGE

& iDisk

* Pater Baor Galvin's iFod

00000

e w g =

oo

Premes

& pba
A Apalications
[Dotuments
| Cames
| Wlities
= o
[Deskiop Fwsical: £81 KE (912,144
W Favarites
b Music L yow
= Movies T Seiet o
Picturas
! Sites | hg-di
« Pablic I
| Preferences [
Libeary I

s (700,
/2PIC- Llirp)
Cir 1

[0

i
projerts
consult

=
>
&,

10F € inervs selected - 7343 GIawmiatle 5.0 G3 uses

® 0| & | C|5iems

. Address Book

—_— ry and Theszurus
| QAanzle ~ =3

C, aperating system
Hema
[Aaole Computer In . Apple Computer Inc.
| [lDirectories | s Aaple Computer In e
TiLast Import opecrealang syselcmm
o
the software th it supports a computer funetions.
s such as scleulin 3 tasks, execrting applic: tions. avd
| maln 1-803-MY-APPLE contralling peripher:ls
alier B00-275-2273
home page hitpafems.apRe.com
work 1 Infivite oop
Copert no CA 93014
Urited Stztes
= | =l 2 found y | S

*(One of the design goals was when you saw it, yantwo it. Said by

Operating System Concepts — 9t Edition 2.12 Silberschatz, Galvin and Gagne ©2013

A
%
(%

;
fa—
/

r System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

Three most common APls are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,

Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM T(Operating System Interface [for Unix"EEE1003.1; applicable to any OS)

Why use APIs rather than system Calls?"i and)

(Note that the system-call names used throughout this text are
generic)

Operating System Concepts — 9t Edition 2.13 Silberschatz, Galvin and Gagne ©2013

g
L \

,‘,\mw,.k N

Example of System Calls

System call sequence to copy the contents of one file to another file

source file

Operating System Concepts — 9th Edition

i

destination file

é Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

.

\

/

214

A X
Silberschatz, Galvin and Gagne ©2013

r .8 Example of Standard API

€\

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read(int f£d4d, wvoid *buf, size t count)
I | | | | |
return function paramaters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:
* int fd—the file descriptor to be read
void *buf-—a buffer where the data will be read into
®* size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read() returns —1.

SO
/ S
A X

Operating System Concepts — 9t Edition 2.15 Silberschatz, Galvin and Gagne ©2013

A

By

P) I
“$7/ System Call Implementation

Typically, a number associated with each system call

System-call interface maintains a table indexed according to
these numbers

The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

The caller need know nothing about how the system call is
implemented

Just needs to obey APl and understand what OS will do as a
result call

Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

fog 7
A }gv a

Operating System Concepts — 9t Edition 2.16 Silberschatz, Galvin and Gagne ©2013

“#7/ API - System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel -
mode (The system-call interface intercepts saalthe AP@
> | open ()
Implementation
i - Of open ()
. system call
* . : .)
(A Is associated with each system call) return

ST
S \
—
/7 m
A Y

Operating System Concepts — 9t Edition 2.17 Silberschatz, Galvin and Gagne ©2013

“%77 System Call Parameter Passing

Often, more information is required than simply identity of desired
system call

Exact type and amount of information vary according to OS and
call

Three general methods used to pass parameters to the OS
Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

Block and stack methods do not limit the number or length of
parameters being passed

o
[y <
1S

Operating System Concepts — 9t Edition 2.18 Silberschatz, Galvin and Gagne ©2013

>’ Parameter Passing via Table

(X: of the table containing the parameters)
*

— X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 — > call 13

user program

operating system

- £ 4=
W oA
¥ N

Operating System Concepts — 9t Edition 2.19 Silberschatz, Galvin and Gagne ©20

g Types of System Calls

Process control
end, abort
load, execute
create process, terminate process
get process attributes, set process attributes
wait for time
wait event, signal event
allocate and free memory

Dump memory if error
Debugger for determining bugs, single step execution
Locks for managing access to shared data between processes

Operating System Concepts — 9t Edition 2.20 Silberschatz, Galvin and Gagne ©2013

g Types of System Calls

File management
create file, delete file
open, close file
read, write, reposition
get and set file attributes

Device management
request device, release device
read, write, reposition
get device attributes, set device attributes
logically attach or detach devices

Operating System Concepts — 9th Edition 2.21

Silberschatz, Galvin and Gagne ©2013

4

g» mm.l
/A h
\ |

27" Types of System Calls (Cont.)

S\

Information maintenance
get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes

Communications
create, delete communication connection

send, receive messages if message passing model to host name or
process name

» From client to server
Shared-memory model create and gain access to memory regions
transfer status information
attach and detach remote devices

Operating System Concepts — 9t Edition 2.22 Silberschatz, Galvin and Gagne ©2013

=

P
“$7” Types of System Calls (Cont.)

LA

{

Protection
Control access to resources
Get and set permissions
Allow and deny user access

Operating System Concepts — 9th Edition 2.23 Silberschatz, Galvin and Gagne ©2013

Examples of Windows and

Unix System Calls

Process
Control

File

Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 9th Edition

Windows

CreateProcess ()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

2.24

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

Silberschatz, Galvin and Gagne ©2013

S |
B Standard C Library Example

el
A\

C program invoking printf() library call, which calls write() system call

#include <stdio.h=
int main ()

{

printf ("Greetings”); |-

retumn 0
}

user
mode ¥

standard C library ——
kemnel
mode

write ()
write ()
system call

Operating System Concepts — 9t Edition 2.25 Silberschatz, Galvin and Gagne ©2013

A
A
¥

(o]

g Example: MS-DOS

©\s

(To allow as much mem space for the proc,

Single-tasking portion of is overwritten by the proc
being executed)

Shell invoked when system

booted free memory
Simple method to run
program free memory

No process created process

Single memory space

Loads program into memory,

. command
overwriting all but the kernel interpreter command
i interpreter
Program exit -> shell
kernel kernel

reloaded

(a) (b)

(a) At system startup (b) running a program

N ‘\\nw
AN L‘)
S 4%\@
A AP

Operating System Concepts — 9t Edition 2.26 Silberschatz, Galvin and Gagne ©2013

Skl | g >
L&/,—/ Exa m p I s F ree BS D (Berkeley ____ Distribution)

Unix variant
Multitasking

User login -> invoke user’ s choice of
shell

Shell executes fork() system call to create
process

Executes exec() to load program into
process

Shell waits for process to terminate or
continues with user commands

Process exits with code of 0 — no error or
> (0 — error code

Operating System Concepts — 9th Edition 2.27

process D

free memory

process C

interpreter

process B

kernel

/ N %
A S

Silberschatz, Galvin and Gagne ©2013

A

S

System programs provide a convenient environment for program
development and execution. They can be divided into:

File manipulation

Status information sometimes stored in a File modification
Programming language support

Program loading and execution

Communications

Background services

Application programs

Most users’ view of the operation system is defined by system
programs, not the actual system calls (since systemcallis ______ than system program)

/ N %
A S

Operating System Concepts — 9t Edition 2.28 Silberschatz, Galvin and Gagne ©2013

v System Programs

Provide a convenient environment for program development and
execution

Some of them are simply user interfaces to system calls; others
are considerably more complex

File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

Status information

Some ask the system for info - date, time, amount of available
memory, disk space, number of users

Others provide detailed performance, logging, and debugging
information

Typically, these programs format and print the output to the
terminal or other output devices

Some systems implement a registry - used to store and retrieve
configuration information

Vg “‘
A A0%

Operating System Concepts — 9t Edition 2.29 Silberschatz, Galvin and Gagne ©2013

A
#)

S5 System Programs (Cont.)

File modification
Text editors to create and modify files

Special commands to search contents of files or perform
transformations of the text

Programming-language support - Compilers, assembilers,
debuggers and interpreters sometimes provided

Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

Allow users to send messages to one another’ s screens, browse
web pages, send electronic-mail messages, log in remotely,

* transfer files from one machine to another

(Two models: passing and memory)
*(Message passing: thru mailbox in ; writg ausd then read msg; =N
useful for amount msg exchange, ___ to in@ié, connection must be preexistin /“%és%
*(Shared memory: speed, no ____involvemeotegtion and sync problem) 4 }g

Operating System Concepts — 9t Edition 2.30 Silberschatz, Galvin and Gagne ©2013

A,
#

)
"S5 System Programs (Cont.)

Background Services
Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

Provide facilities like disk checking, process scheduling, error
logging, printing

Run in user context not kernel context

Known as services, subsystems, daemons

Application programs
Don’t pertain to system
Run by users
Not typically considered part of OS
Launched by command line, mouse click, finger poke

Operating System Concepts — 9t Edition 2.31 Silberschatz, Galvin and Gagne ©2013

ol Operating System Design
r and Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

User goals — operating system should be convenient to use, easy
to learn, reliable, safe, and fast

System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

Operating System Concepts — 9t Edition 2.32 Silberschatz, Galvin and Gagne ©2013

) Operating System Design and
Nl Implementation (Cont.)

Important principle to separate

Policy: What will be done? *w: level approach

Mechanism: How to do it? * P: detail implementation of the M, likely to
across places or over time

Mechanisms determine how to do something, policies decide what will
be done

The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to be

changed later
(ex) Memory design
M: Use cache memory; P: 2-level cache

Specifying and designing OS is highly creative task of software

engineering
(ex) Microkernel-based OS: basic set of primitivdding blocks; more advanced M
and P are added via user-created modules

* Solaris: allows scheduling P is decided by loadable which decides time shared,
batch, real time, or fair share, etc
*\Windows: P and M are in the system (sinddiac OS X)

Operating System Concepts — 9t Edition 2.33 Silberschatz, Galvin and Gagne ©2013

A,
#

P

2 Implementation

S\
= NS

Much variation
: *

Early OSes in assembly language (unix has _lines for scheduling and drivers)

Then system programming languages like Algol, PL/1

Now C, C++*(Code in HLL can be written , more compact, _ to maintain, but)
Actually usually a mix of languages

Lowest levels in assembly

Main body in C

Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

More high-level language easier to port to other hardware
But slower
Emulation can allow an OS to run on non-native hardware

7 S
4l P

Operating System Concepts — 9th Edition 2.34 Silberschatz, Galvin and Gagne ©2013

“$¥/ Operating System Structure

General-purpose OS is very large program
Various ways to structure one as follows

SR
y/ Nﬁ
A X

Operating System Concepts — 9th Edition 2.35 Silberschatz, Galvin and Gagne ©2013

v Simple Structure
l.e. MS-DOS — written to provide X (left half is , right half is)
the most functionality in the least

space
Not divided into modules

Although MS-DOS has some d-

structure, its |r_1terfallces and resident system program
levels of functionality are not

well separated

application program

*(Because of access to the device driver : ' ' ‘
from app. program, crash might occur)
*(Developed when the HW resource is quite) m

ROM BIOS device drivers ’

4 <
A mg ol
Operating System Concepts — 9th Edition 2.36 Silberschatz, Galvin and Gagne ©2013

A

S

' ,‘AW%.&
bl

*(Peter Neuman coined project Unics (UNiplexed Infation & Computing Services) Unix)

UNIX — limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

Systems programs
The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level* (may be too)

Operating System Concepts — 9t Edition 2.37 Silberschatz, Galvin and Gagne ©2013

“#”" Traditional UNIX System Structure

Beyond simple but not fully layered

(This structure was developed when the HW resowesequite)

(the users)

shells and commands

(Monolithic compilers and interpreters
structure is system libraries
difficultto

system-call interface to the kernel

and maintain|)

- signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
* 2 character 1/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory
(kernel partition: Mach employs by mguimnessentials into system or USer AQ
Operating System Conlt(:ae\[é?sl pr@%ﬁm} 2.38 Silberschatz, Galvin and Gagne ©2013

" Layered Approach

*
(Layered approach is possible with proper __ stppo

The operating system is
divided into a number of
layers (levels), each built
on top of lower layers.
The bottom layer (layer 0),
is the hardware; the
highest (layer N) is the
user interface.

layer N
user interface

layer O
hardware

With modularity, layers are
selected such that each
uses functions
(operations) and services
of only lower-level layers

*(Info hiding; programmer can freely implement the -level

routines as far as the Is unchanged)
* (Adv of layering: simplicity of and delging; Difficulty: how to the layers, |
efficient; Trend is to the layers)

W\
W\}
f,/ﬁ..‘\x\‘
(
Dy

Operating System Concepts — 9t Edition 2.39 Silberschatz, Galvin and Gagne ©2013

y

S

' w”"m'k/ .
“$77 Microkernel System Structure

«Moves as much from the kernel into user space
(Mid 80s, for distributed and parallel compgti'85 ~ '94)
Mach example of microkernel*(Keeps minimal process and memory management,@mchy

Mac OS X kernel (Darwin) partly based on Mach

Communication takes place between user modules using message

passing
Benefits:
*
Easier to extend a microkerne]l (since new services are addedto __ space)

Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)
More secure

Detriments:

Performance overhead of user space to kernel space

Communication’fso NT 4.0 moved some layers from user space toekspace A 3\)
(structure)) (- /S’m%:f
295

\
\
\w”

v
"QU/

Operating System Concepts — 9t Edition 2.40 Silberschatz, Galvin and Gagne ©2013

f,

=

P _
“$77 Microkernel System Structure

&\

~
va

|

L

Application File Device user
Program System Driver mode
n A n A
i messages ' '. messages H o]

memory
managment

kernel

Interprocess .
scheduling mode

Communication

A microkernel 4

hardware

Operating System Concepts — 9t Edition 2.41 Silberschatz, Galvin and Gagne ©2013

Most modern operating systems implement loadable kernel modules
Uses object-oriented approach
Each core component is separate
Each talks to the others over known interfaces
Each is loadable as needed within the kernel
(___ links during boot time or run time)
Overall, similar to layers but with more flexible
Linux, Solaris, etg (Mac OS X)

Operating System Concepts — 9t Edition 2.42 Silberschatz, Galvin and Gagne ©2013

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel loadable

miscellaneous
modules

system calls

executable
formats

STREAMS
modules

(Similar to approach, but difference is)
* (Similar to in that the primary modude lonly core functions, but more efficient ‘
because no passing for communication) /}

Operating System Concepts — 9th Edition 2.43 Silberschatz, Galvin and Gagne ©2013

A
A
(3,

- Hybrid Systems

Most modern operating systems actually not one pure model
Hybrid combines multiple approaches to address performance, security,
usability needs
Linux and Solaris kernels in kernel address space, so monolithic, plus
modular for dynamic loading of functionality

Windows mostly monolithic, plus microkernel for different subsystem
personalities

Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming
environment

Below is kernel consisting of Mach microkernel and BSD Unix parts,
plus 1/O kit and dynamically loadable modules (called kernel

extensions)

fog 7
A }gv a

Operating System Concepts — 9t Edition 2.44 Silberschatz, Galvin and Gagne ©2013

|)

gr!/{m”\ y

0 Mac OS X Structure
*(hybrid structure known as)

hical interf
graphical user interface Rl

application environments and services

(API for Objectlve C programmlngimultlmedla framwork)

kernel environment

BSD
Mach
/O kit kernel extensions
*(: mem manage, RPC, IPC, msg passing, tisceatiuling)
*(. networking, file system, POSIX API, Ptrdea N
*(: for development of device drivers andadgitally loadable modules) ,,/55..,}\;\\}

Operating System Concepts — 9t Edition 2.45 Silberschatz, Galvin and Gagne ©2013

A
A
¥

(o

r o 10S

S\

Apple mobile OS for iPhone, iPad *
in diff from C '
Structured on Mac OS X, added functionality gﬂsggrt'fffence mﬁ‘evi‘;‘;‘fa °

including touch screen)

\

Does not run OS X applications natively

» Also runs on different CPU architecture Cocoa Touch
(ARM vs. Intel)
Cocoa Touch Objective-C API for Media Services

developing apps

Media services layer for graphics, audio, Core Services

video

Core OS

Core services provides cloud computing,
databases

Core operating system, based on Mac OS X
kernel

N \\(W
SN o L‘)
en)
“« I

Operating System Concepts — 9t Edition 2.46 Silberschatz, Galvin and Gagne ©2013

r Android

Developed by Open Handset Alliance (mostly Google)
Open Source

Similar stack to 10S

Based on Linux kernel but modified
Provides process, memory, device-driver management
Adds power management

Runtime environment includes core set of libraries and Dalvik virtual
machine*(designed for , and optimized for mobileicks of limited mem and CPU capability)

Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated to
executable than runs in Dalvik VM

Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

&
[y <
A }gv 3

Operating System Concepts — 9t Edition 2.47 Silberschatz, Galvin and Gagne ©2013

A
i

/,

/»”f"'“*i,,, . .
2 Android Architecture

Application Framework

Libraries Android runtime
(- library by Silicon Graphics)
SQLite openGL Core Libraries
surface media Dalvik
manager framework : ;
virtual machine
webkit libc

=\
3 — ty
o ;k\""

A A

43K

Operating System Concepts — 9t Edition 2.48 Silberschatz, Galvin and Gagne ©2013

3!

~

('r’ 3

_,j;l/ Operating-System Debugging

Debugging is finding and fixing errors, or bugs
OSes generate log files containing error information

Failure of an application can generate core dump file capturing
memory of the process

Operating system failure can generate crash dump file containing
kernel memory

Beyond crashes, performance tuning can optimize system performance
Sometimes using frace listings of activities, recorded for analysis

Profiling is periodic sampling of instruction pointer to look for
o Y
statistical trends(dynamic program analysis measuring usage of _freq & duration

of for optimization, using profiler)

Kernighan’ s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

Operating System Concepts — 9t Edition 2.49 Silberschatz, Galvin and Gagne ©2013

»

T Performance Tuning

©\s

Improve performance by e

removing bottlenecks Applications | Processes | Performance | Networking

. —PU L ZPU s Histor
OS must provide means of - _

computing and displaying
measures of system
behaVior FF Usage Page File Lisage History

For example, “top” program

or Windows Task Manager
(display the resources used and the

sorted list of resource-using) Uil it e Lot

Handles 12621 Total 096616
Threads 563 Available 1391552
Processes 50 System Cache 1584164
ommit Charge (k) Kermel Memory (k)
Total 642128 Total 115724
Lirnik 4036760 Paged et iG])
Peal: ailz16 Monpaged 33085

Processes: 50 ZPU Usage: 0% Commit Charge: 6270 [3942M

N
:,/3«-&.}\&\\}
(B

Operating System Concepts — 9t Edition 2.50 Silberschatz, Galvin and Gagne ©2013

DTrace

(tracing framework, Sun for troubleshaptm time, 2005; OpenSolaris)
./all.d ‘pgrep xclock' XEventsQueued

dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTIOCN

*DTrace tool in Solaris,
FreeBSD, Mac OS X allows
live instrumentation on
production systems

Probes fire when code is
executed within a provider,
capturing state data and
sending it to consumers of
those probes * call

Example of following
XEventsQueued system call
move from libc library to
kernel and back

Operating System Concepts — 9th Edition

2.51

0]
0

OO ocOoOC\oo OO O OO0

(= B o R o R o R o R o T o I o I oo [e R

-> XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> loctl
-> loctl
-> getf
-> set active fd
<— set active fd
<— getf
-> get udatamodel
<— get udatamodel

AAARARARARACGCCCOCC OO

-> releasef
-> clear active fd
<— clear active fd
-> c¢v_broadcast
<— cv_broadcast
<— releasef
<— loctl
<— ioctl
<— _XEventsQueued
<— XEventsQueued

dog®mR®==®X KR

=Y
o
G
" 'u//‘\(
)t N

‘4
/
L

Silberschatz, Galvin and Gagne ©2013

&/,‘QW"N}/
o DTrace
DTrace code to record
amount of time each # dtrace -s sched.d
process with UserID 101 is Ad_érace: script ‘sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
: gnome-vfs-daemon 158243
in nanoseconds ;i R
wnck-applet 200030
" gnome-panel 277864
gt ke clock-applet 374916
‘:Ill . mapping-daemon 385475
self->ts = timestamp; RBcheelInaver 514177
} metacity 539281
Xorg 2579646
schad: : :fo—cpu g'anE—tEI'mJI‘Lal 5ﬂﬂ?2ﬁ9
self->ts mixer applet2 7388447
java 10769137
@time [execname] = sum(timestamp - self->ts);
) e Figure 2.21 Output of the D code.

- 4=
W =< A\
» -

Operating System Concepts — 9t Edition 2.52 Silberschatz, Galvin and Gagne ©20

4

p—

y—f Operating System Generation

Operating systems are designed to run on any of a class of machines;
the system must be configured for each specific computer site

SYSGEN program obtains information concerning the specific
configuration of the hardware system

Used to build system-specific compiled kernel or system-tuned
Can general more efficient code than one general kernel

*(SYSGEN info: CPU type, size, devices, O%o0B)
*(Implementation: 3 types
- completely recompile the OS (so fully customizedthus _ OS)
* creation of tables and the selection of modulesfa library
x_ completely table driven such as selection occurs a time (easiest to modify))

Operating System Concepts — 9t Edition 2.53 Silberschatz, Galvin and Gagne ©2013

A,
#

r System Boot

When power initialized on system, execution starts at a fixed memory
location

Firmware ROM used to hold initial boot code

Operating system must be made available to hardware so hardware
can start it

Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

*(for Linux system) _
Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options
Kernel loads and system is then running

Operating System Concepts — 9t Edition 2.54 Silberschatz, Galvin and Gagne ©2013

